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We are like sailors who on the open sea must
reconstruct their ship but are never able to
start afresh from the bottom. Where a beam is
taken away a new one must at once be put
there, and for this the rest of the ship is used
as support. In this way, by using the old
beams and driftwood the ship can be shaped
entirely anew, but only by gradual
reconstruction.

Otto Neurath (1921)
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Supervisor’s Foreword

Our deepest understanding of nature today stands astride two cornerstones of
twentieth-century physics: quantum mechanics and general relativity. The former
has been empirically confirmed in a legion of experiments and is ubiquitous in its
applications. Whether it be lasers, transistors, superfluids, molecules, condensates,
magnetism, or subatomic particles, quantum physics is the essential tool required in
obtaining a quantitative and predictive description of these phenomena. Likewise,
general relativity has proven to be indispensable in describing our universe at large
scales ranging from the solar system to galaxies to the farthest reaches of the
cosmos. While experimental tests of general relativity are not as widespread, they
are no less impressive in revealing subtle aspects to the fabric of reality that nobody
thought possible a little more than a century ago.

Despite this impressive array of achievements, these two descriptive paradigms
are at present incompatible with each other. Despite huge efforts by a very large
number of theoretical physicists, we have yet to understand how to quantize general
relativity—or more broadly, how to obtain a quantum description of the gravitational
force. While the technical problems are formidable, the problems run much deeper
than that, since each is founded on quite distinct conceptualizations of nature.
General relativity posits that space and time are unified into spacetime, an entity
that dynamically responds to the behaviour of matter and energy and which in
turn governs motion of the same. Time and space are fungible, with different
observers able to use any desired self-consistent set of coordinates to describe given
phenomena, and which under the right circumstances imply such counterintuitive
predictions as the expansion of the universe and the existence of black holes.
Quantum physics is no less counterintuitive. It conceives the most basic properties
of matter—location, momentum, angular momentum, electric flux—as having an
indefinite character described by a wave function, whose ontological status is
today a matter of active debate. Any given system not only can be in one of a
variety of possible states but can also simultaneously be in mutually incompatible
combinations of such states (such as spin-up and spin-down), whose final outcome
after a given process can be predicted only in probabilistic terms. Time plays a
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x Supervisor’s Foreword

special role, cause and effect are differently understood, and correlations between
two different systems can be much stronger than non-quantum theories (such as
general relativity) would allow.

It is in this context that the work Alexander Smith describes in his thesis needs to
be understood. Here Alex examines some very basic foundational issues in physics
connected with our understanding of space and time. Rather than following more
traditional routes in string theory and loop quantum gravity, Alex explores how
our very basic notions of space and time, along with our descriptions of them, are
enriched by adopting new approaches and perspectives. In so doing he obtains three
novel results.

First, using an operational approach based on a theoretical model of a detector
with two energy levels (a simple kind of atom), he finds that such detectors can, in
principle, tell us about the topological structure of space, even when this structure
is hidden inside a black hole. As Alex demonstrates, this is intrinsically connected
with employing a quantum detector or a pair of such detectors to probe the vacuum
structure of spacetime. Quantum fluctuations of fields in this vacuum are capable
of exciting a quantum detector that would otherwise remain forever in its state of
lowest energy (or ground state). If a pair of detectors is present then their quantum
states can become entangled, yielding a greater measure of mutual correlation than
is otherwise possible. Most importantly, as Alex demonstrates, these excitation
rates and entanglement properties provide a “thumbprint” of the topology of space,
distinguishing between structures that would otherwise be indistinguishable to
observers outside the black hole that could not exploit quantum physics.

The second result is that of obtaining the first construction of a quantum reference
frame associated with translations in phase space, or shifts in the origin of coordinate
axes. Comparing two such frames in a non-quantum (or classical) sense is a
straightforward problem in first-year physics. However to do so in a fully quantum
sense—without recourse to classical physics—remained an unsolved problem until
Alex addressed it in his thesis. He made progress by generalizing the method of
group twirls to the case of reference frame symmetries under non-compact groups.
He was then able to use the formalism he developed to present a protocol for
communication between parties not sharing a common reference frame. This work
is the first step in constructing quantum reference frames for relativistic systems.

The third result is that of formulating a new notion of quantum time. In the
final part of his thesis, Alex constructs a conditional interpretation of time in terms
of a quantum system whose different responses to phenomena can be regarded as
clock readings. Alex, for the first time, takes into account interactions between the
quantum clock and the system whose time evolution it is measuring. He finds that
the notion of time which emerges entails a modification to Schröedinger’s equation,
the foundational equation of quantum physics.

In reading this thesis you will find that Alex’s investigations of each topic are
well grounded, sometimes almost starting from scratch to eventually arrive at far
reaching conclusions. Its common thread is that “applying the theory of quantum
information to situations at the boundary of relativity and quantum theory will
certainly lead to new insights into the nature of our world”. This is what the thesis
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achieves. We are both grateful to the Natural Sciences and Engineering Research
Council of Canada for making this work possible, and to both the University of
Waterloo and Macquarie University where this work was carried out.

Waterloo, ON, Canada Professor Robert B. Mann
October 2018
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Chapter 1
Introduction

At the beginning of his book Quantum Field Theory in Curved Spacetime and Black
Hole Thermodynamics [3], Robert Wald outlines the main applications of quantum
field theory on curved spacetime:

Its two applications of greatest interest are to phenomena occurring in the very early
universe and to phenomena occurring in the vicinity of black holes. During the past twenty-
five years such phenomena have been explored theoretically, and some unexpected and
intriguing results have been obtained. Most prominent among these was the discovery by
Hawking that particle creation occurs in the vicinity of black holes. As a direct consequence,
a deep connection was obtained between the laws of black hole physics and the ordinary
laws of thermodynamics. The Hawking effect and its implications are probably the most
valuable clues we have, at present, as to the fundamental features that a quantum theory of
gravity is likely to possess.

Since the publication of Wald’s book in 1994, physics has taken on an increas-
ingly information-theoretic flavour. This has led to a quantum theory of information
which promises computers with unprecedented power and unconditionally secure
cryptography, and perhaps most importantly, it has offered us a new perspective
on quantum theory itself. The aim of this thesis is to use the large toolbox
of quantum information theory to study problems whose solution requires both
quantum mechanics and relativity, with the hope that these investigations may
offer new unexpected and intriguing results about possible features of quantum
gravity.

This thesis is broken into three distinct parts, each of which is self-contained;
these parts may be read in any order. We give a brief description of each chapter
here.

© Springer Nature Switzerland AG 2019
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2 1 Introduction

1.1 Part I: Detectors in Curved Spacetimes

Chapter 2: Quantum Field Theory on Curved Spacetimes
We begin by describing the quantization of a real scalar field on a curved spacetime;
we limit ourselves to the study of such fields because they are mathematically simple
while exhibiting a range of quantum field theory effects on curved spacetimes.
Beginning with the action for a real scalar field, we demonstrate how the equations
of motion for the field come about and introduce an appropriate inner product on the
space of solutions. We then describe the canonical quantization of this field theory
and emphasize the non-uniqueness of the vacuum state. We describe in detail the
particle interpretation of such a field theory with an emphasis on the importance of
an operational definition of particles.

Chapter 3: The Unruh-DeWitt Detector and Entanglement Harvesting
In this chapter we introduce the Unruh-DeWitt detector: a two-level quantum system
interacting locally with a quantum field moving through spacetime along a timelike
trajectory. We present a physical motivation for this detector model [2]. Then we
derive the transition probability that the detector beginning in its ground state
transitions to its excited state to leading order in the interaction strength between
the detector and field. For detectors in curved spacetimes, we express this transition
probability in terms of the Wightman function of the field. We also introduce the
transition rate of such a detector and express it in terms of the Wightman function.

We then study the entanglement harvesting protocol in which two detectors
begin in a separable state and as a result of their local interaction with the field
become entangled. This protocol is generalized to detectors in arbitrary curved
spacetimes admitting a Wightman function, and the final state of the two detectors
is derived to all orders in perturbation theory; to leading order in the interaction
strength, the final state of these detectors is expressed in terms of the Wightman
function. We then compute several measures of entanglement and correlations
(negativity, concurrence, entanglement of formation, and correlations between local
measurements of the detectors) quantifying the amount of entanglement that results
between the two detectors.

The measurement process involves an interaction between a measuring apparatus
and the system to be measured. Viewing a collection of detectors as a measuring
apparatus and a quantum field on curved spacetime as the system to be measured,
we derive the associated measurement model and identify the observables on the
field Hilbert space these detectors measure; the leading order contribution to the
POVM elements defining these observables is given. We use this measurement
model framework to rederive the transition probability of a single detector. We
comment on possible applications of these results.

Chapter 4: Unruh-DeWitt Detectors in Quotients of Minkowski Space
We apply the entanglement harvesting protocol developed in Chap. 3 to detectors
in Minkowski space and two cylindrical spacetimes constructed by topological
identifications of Minkowski space. To do so, we review the image sum derivation
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of the Wightman functions in these cylindrical spacetimes. We investigate how
the entanglement harvesting protocol depends on the global topology of these
spacetimes.

Chapter 5: Unruh-DeWitt Detectors in (2+1)-Dimensional Black Hole Space-
times
In this chapter we apply the formalism developed in Chap. 3 to detectors in two
black hole spacetimes: the BTZ black hole and the RP2 geon. These spacetimes are
constructed by topological identifications of the (2+1)-anti-de Sitter space. Using
this fact, we review the image sum derivation of the Wightman function in both
spacetimes. The transition rate of detectors operating in the exterior region of both
spacetimes is evaluated.

We will see that the RP2 geon black hole is an intermediate between a stationary
and dynamical spacetime, in the sense that the non-stationary features are hidden
behind its horizons. We demonstrate that a detector in the exterior region of the
RP2 geon spacetime is sensitive to these features. We will show that this detector
develops a time-dependent transition rate which oscillates around the transition rate
of an identical detector in the BTZ spacetime. This is surprising seeing as the BTZ
black hole and RP2 geon are locally indistinguishable from one another in the region
in which the detectors are operating.

Next we realize the entanglement harvesting protocol for two detectors located in
the exterior region of the BTZ black hole. This allows us to investigate operationally
the entanglement structure of the Hartle-Hawking vacuum as seen by two detectors,
in particular, how this entanglement depends on the detectors proximity to the black
hole horizon. This is the first example of the entanglement harvesting protocol in a
black hole spacetime.

1.2 Part II: Quantum Reference Frames

Chapter 6: Quantum Reference Frames Associated with Noncompact Groups
The language used to describe a collection of reference frames is group theory.
This is because changes of a reference form a group. In this chapter, we explore
the consequences of replacing a classical reference frame with a quantum one. We
find that the relational description of a quantum state suitable for a system defined
with respect to a reference associated with a compact group does not generalize
to the case of noncompact groups. This is a result of the group average over a
noncompact group producing non-normalizable states; this average is known as
the G-twirl. However, for classical reference frames associated with the groups of
spatial translations and inertial reference frames, we show that the G-twirl over
these noncompact groups singles out a relational state which corresponds to tracing
out degrees of freedom associated with the centre-of-mass of a composite system.

We then examine the informational properties of this relational description for
quantum systems of two and three particles prepared in fully separable Gaussian
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states with respect to an external reference frame. In particular we quantify the
entanglement that appears between the centre-of-mass and relational degrees of
freedom of these systems, as well as the entanglement that appears among the
relational degrees of freedom. We investigate how this entanglement depends on
the mass of the particles and their state with respect to an external frame.

Motivating this investigation is the aspiration for a relational quantum theory,
which will certainly require a description of quantum systems with respect to other
quantum systems.

Chapter 7: Communication Without a Shared Reference Frame
We generalize a communication protocol introduced by Bartlett et al. [1] in which
two parties communicating do not share a classical reference frame, to the case
when changes of their reference frames form a one-dimensional noncompact Lie
group. Alice sends to Bob the state ρR ⊗ ρS , where ρS is the state of the system
Alice wishes to communicate and ρR is a token of her reference frame. Because
Bob is ignorant of the relationship between his reference frame and Alice’s, he will
describe the state ρR ⊗ ρS as an average over all possible reference frames. Bob
measures the reference token and applies a correction to the system Alice wished to
communicate conditioned on the outcome of the measurement. The recovered state
ρ′S is decohered with respect to ρS , the amount of decoherence depending on the
properties of the reference token ρR .

We present an example of this protocol when Alice and Bob do not share a
reference frame associated with the one-dimensional translation group and use the
fidelity between ρS and ρ′S to quantify the success of the recovery operation.

1.3 Part III: Quantizing Time

Chapter 8: The Conditional Probability Interpretation of Time: The Case of
Interacting Clocks
The conditional probability interpretation of time is based upon conditioning a
solution to the Wheeler-DeWitt equation on a subsystem of the universe being in
a state corresponding to the time t ; this subsystem serves as a clock. This procedure
assigns a conditional state to the rest of the universe |ψS(t)〉, which satisfies the
Schrödinger equation.

We generalize the conditional probability interpretation of time to take into
account an interaction between the clock and system comprising the rest of the
universe. Heuristically, we should expect such a coupling between any clock and
system at some scale resulting from their gravitational interaction. We find that the
conditional state |ψS(t)〉 satisfies a time-nonlocal modified Schrödinger equation
in which the system Hamiltonian is replaced with a self-adjoint integral operator
that depends on the interaction between the clock and the rest of the universe. A
series solution to the modified Schrödinger equation is constructed analogous to the
Dyson series.



References 5

1.4 Notation and Conventions

• In Chaps. 2–4 the signature of the metric is chosen to be mostly negative+−−−,
while in Chap. 5 the signature is mostly positive − + ++. This is done so that
the results presented in each chapter are easily comparable to existing literature.

• Natural units are used throughout h̄ = c = 1.
• Here is a list of the symbols used and their names.

H, K Hilbert space
HD, HA, HB Detector Hilbert space
Hφ Scalar field Hilbert space
HC Clock Hilbert space
HS System Hilbert space
Hkin Kinematical Hilbert space HC ⊗HS

Hph Physical Hilbert space
L (H) The space of bounded linear operators on H
Ls (H) The space of bounded self-adjoint operators on H
S (H) The space of states on H
U (H) The space of unitary operators on H
E (H) The space of positive operator valued measures (POVM) on H
G A group
e ∈ G The identity element of the group G

Tn n-dimensional translation group
Z The group of integers
Z2 The cyclic group of dimension 2
� AdS length scale
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Part I
Detectors in Curved Spacetimes



Chapter 2
Quantum Field Theory on Curved
Spacetimes

Quantum field theory on curved spacetimes examines the behaviour of quantum
fields in the presence of a classical gravitational field described by the theory of
general relativity. It is used to study phenomena where both gravity and the quantum
nature of the field are important, but the quantum properties of the gravitational field
itself can be ignored. Scalar field theory on curved spacetime exhibits many novel
features of quantum field theory on curved spacetimes with minimal mathematical
complexity. For this reason, we will consider scalar field theory exclusively, while
acknowledging many of the results presented can be generalized to higher spin
fields. The treatment presented here follows [1, 4].

The action describing a real scalar field φ(x) with mass m on a n-dimensional
curved spacetime is

S =
∫

dxn L(x) =
∫

dxn
1

2

√−g
(
∂μφ(x) ∂

μφ(x)−
[
m2 + ξR(x)

]
φ(x)2

)
,

(2.1)

where g is the determinant of the metric gμν of the spacetime in which the field
lives. The scalar field is coupled to the gravitational field by the presence of the
term ξR(x) in the action, where ξ is a numerical factor and R(x) is the Ricci scalar,
which is the trace of the Ricci curvature tensor

Rαβ := ∂ρ�
ρ
βα − ∂β�

ρ
ρα + �ρ

ρλ�
λ
βα − �ρ

βλ�
λ
ρα, (2.2)

where �λ
μν denote the Christoffel symbols associated with the metric gμν

�λ
μν := 1

2
gλρ

(
∂νgρμ + ∂μgρν − ∂ρgμν

)
. (2.3)

Extremizing the action S with respect to φ(x) yields the equation of motion which
is satisfied by the field

© Springer Nature Switzerland AG 2019
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[
�+m2 + ξR(x)

]
φ(x) = 0, (2.4)

where �φ(x) := (−g)−1/2∂μ
[
(−g)1/2gμν∂νφ(x)

]
.

There exists a set of mode functions ui(x), where i indicates all the quantities
required to label the mode, that form a complete orthonormal set of solutions to
Eq. (2.4) with respect to the inner product

(φ1, φ2) = −
∫
�

d�μ

√−g
(
φ1(x)∂μφ2(x)

∗ − [∂μφ1(x)
]
φ2(x)

∗) , (2.5)

where d�μ = nμd�, nμ is a future-pointing unit vector orthogonal to the spacelike
Cauchy hypersurface �, d� := det h dxn−1 is the invariant measure on �, and h

the induced metric on �. Explicitly, the orthonormality relationships between the
mode functions are1

(ui, uj ) = δij , (u∗i , u∗j ) = −δij , and (ui, u
∗
j ) = 0. (2.6)

Suppose the spacetime admits a timelike Killing vector ξt , which generates time
translations in the coordinate t . The remaining n − 1 coordinates will be denoted
by bold letters, that is, x = (t, x). In such spacetimes, there exists a set of mode
functions which are eigenfunctions of the operator i∂t

i∂tuk(x) = ωkuk(x), (2.7)

where ωi ≥ 0. The field φ(x) may be expanded in terms of these modes as

φ(x) =
∑
k

[
uk(x)ak + u∗k(x)a

†
k

]
. (2.8)

Quantization proceeds by promoting the field φ(x) and its conjugate momentum
π(x) := ∂L/∂[∂tφ(x)], where L is the Lagrangian density appearing in Eq. (2.1),
to operators and imposing the canonical commutation relations

[φ(t, x), π(t, y)] = iδn−1(x− y), (2.9)

and

[φ(t, x), φ(t, y)] = [π(t, x), π(t, y)] = 0. (2.10)

1In this chapter we will confine the solutions ui(x) to a (n − 1)-tours of side length L, i.e. box
normalized solutions. This results in the solutions being labelled by discrete indices. To convert

to the continuum normalization one should replace
(

2π
L

)n−1∑
i with

∫
dkn−1 and the Kronecker

delta with the Dirac delta function.
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These commutation relations imply the following commutation relations for the
operators ak and a

†
k

[ai, a†
j ] = δij and [ai, aj ] = [a†

i , a
†
j ] = 0. (2.11)

The Hamiltonian operator associated with the scalar field may be constructed
from the classical energy-momentum tensor

Tμν = 2√−g
δS

δgμν
, (2.12)

by integrating over a constant time spacelike hypersurface �

H :=
∫
�

d�μ ξνt Tμν =
∑
i

ωk

(
a

†
kak + 1/2

)
. (2.13)

States of the field span a Hilbert space, a convenient basis for which is known as
the Fock basis. The construction of the Fock basis begins by defining the vacuum
state |0〉, which has the property that it is the state with lowest energy as measured by
the operator H in Eq. (2.13). As a consequence, the vacuum state may equivalently
be defined as the state that it is annihilated by all the operators ak

ak |0〉 = 0 ∀k. (2.14)

The Fock basis states are constructed by repeatedly acting on the vacuum state with
the operators a†

k

∣∣nk1 , nk2 , . . . , nkj
〉 = 1√

nk1 ! nk2 ! . . . nkj !
(
a

†
k1

)nk1
(
a

†
k2

)nk2
. . .
(
a

†
kj

)nkj |0〉 .
(2.15)

Now consider the operator

Nk := a
†
kak. (2.16)

The eigenstates of Nk are the Fock basis states given in Eq. (2.15)

Nki

∣∣nk1 , nk2 , . . . , nkj
〉 = nki

∣∣nk1 , nk2 , . . . , nkj
〉
, (2.17)

with eigenvalue nki corresponding to the integer labelling the number of times the
operator a†

ki
has to be applied to the vacuum |0〉 to create the state

∣∣nk1 , nk2 , . . . , nkj
〉
.

From the definitions of Nk and H above, it is seen that

[Nk,H ] = 0, (2.18)
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which implies that eigenstates of Nk are eigenstates of H . Furthermore, for each
increment of nki defining a particular Fock basis state, the expectation value of
H increments by ωki . This observation suggests we interpret nki as labelling the
number of quanta or particles2 with energy ωki in the field state given in Eq. (2.17).
The total number of particles in a given state is then counted by the number operator

N :=
∑
k

Nk. (2.19)

For example, the number of particles in a Fock basis state is the eigenvalue of N

N
∣∣nk1 , nk2 , . . . , nkj

〉 =
(∑

i

nki

) ∣∣nk1 , nk2 , . . . , nkj
〉
, (2.20)

which is seen to be
∑

i nki .
Having introduced the Fock basis states and the notion of particles, a physical

interpretation is now available for the operators ak and a
†
k . From Eqs. (2.15)

and (2.17) we see that the operator ak reduces and the operator a
†
k increases the

number of particles in the mode labelled by k. We will therefore refer to ak and a
†
k

as creation and annihilation operators.
The quantization procedure presented above depends on our choice to expand the

field in terms of the mode functions uk(x) in Eq. (2.8) and imposing the canonical
commutation relations between the field operator φ(x) and its canonical momentum
π(x) := ∂L/∂[∂tφ(x)], which depends on a time derivative. Consequently, this
quantization procedure depends on the choice of coordinate system.

In Minkowski space a preferred set of modes, and the vacuum they define, is
singled out by the requirement that the vacuum state is the same for all inertial
observers. The ability to do this depends on the isometry group of the spacetime,
which in Minkowski space is the Poincaré group. However, a curved spacetime may
not admit an isometry group and thus, in general, there is no preferred coordinate
system to carry out the quantization procedure with and consequently no preferred
vacuum state exists.

With this in mind, let us consider another complete set of orthonormal mode
function vj (x) which solve Eq. (2.4). The field may be expanded in terms of these
mode functions as

φ(x) =
∑
j

[
vj (x)bj + v∗j (x)b

†
j

]
. (2.21)

2The use of the word “particle” here is different than how the word is used in everyday language.
The word particle commonly refers to an object with a well-defined energy, momentum, and
position. Here, the use of the word particle refers to excitations of the field that have a well-defined
energy. However, these particles are global excitations of the field and therefore do not have a
well-defined position.
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Quantization proceeds as before: bj and b
†
j are promoted to operators satisfying the

commutation relations

[bi, b†
j ] = δij and [bi, bj ] = [b†

i , b
†
j ] = 0. (2.22)

The decomposition of the field in Eq. (2.21) defines a different vacuum state
∣∣0̄〉,

which is annihilated by every annihilation operator bj

bj
∣∣0̄〉 = 0 ∀j. (2.23)

This in turn defines a new Fock basis and a new notion of particle.
As both sets of modes, ui(x) and vj (x), are complete, they may be expanded in

terms of one another as

vj (x) =
∑
i

[
αjiui(x)+ βjiu

∗
i (x)

]
, (2.24a)

ui(x) =
∑
j

[
α∗j ivj (x)− βjiv

∗
j (x)

]
. (2.24b)

This transformation between different sets of mode functions is known as a
Bogoliubov transformation and the coefficients αij and βij as the Bogoliubov
coefficients. The Bogoliubov coefficients are extracted from the above relations
by taking appropriate inner products and using the orthonormality of the mode
functions, with the result

αij = (vi, uj ) and βij = −(vi, u∗j ). (2.25)

Equating the field expansion in terms of ui(x) in Eq. (2.8) with the field expansion
in terms of vj (x) in Eq. (2.21), and employing the relations given in Eq. (2.24),
allows us to express the operators bj in terms of the operators ai and a

†
i and vice

versa

ai =
∑
j

[
αjibj + βjib

†
j

]
, (2.26a)

bj =
∑
i

[
α∗j iai − β∗j ia

†
i

]
. (2.26b)

From the above relations we see that if βij �= 0, the vacuum state |0〉 defined by
the mode functions ui(x) will contain particles as counted by the number operator
N̄ :=∑j b

†
j bj associated with the mode functions vj (x),
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〈0| N̄ |0〉 =
∑
j

∣∣βij ∣∣2 . (2.27)

The same is true of the number of particles counted by the operator N associated
with the modes ui(x) given the state was in the vacuum

∣∣0̄〉 associated with the vj (x)
modes,

〈
0̄
∣∣N ∣∣0̄〉 =∑

j

∣∣βij ∣∣2 . (2.28)

From the preceding discussion it is clear that there is no unique vacuum state
of the field or notion of particle. The vacuum state depends on which set of mode
functions are used to expand the field and carry out the quantization procedure with.
The question then arises, is there a preferred set of mode functions to quantize the
field and define particles and the vacuum with, which matches our experience of
particles and no particles?

As posed, the question is unanswerable. Our experience of particles necessarily
requires us to specify the measurement process by which we detect particles. This
includes the specification of the interaction between the field and the employed
particle detector. This leads to an operational definition of a particle: a particle is
what is detected by a particle detector.

These conclusions are true even in Minkowski space. As discussed above, the
conventional vacuum state is defined as the state for which no inertial detector
registers particles. In other words, the vacuum state is invariant under the Poincaré
group. Indeed, an observer accelerating through this vacuum will see a thermal bath
of particles at a temperature proportional to their acceleration; this is the well-known
Unruh effect [2, 3, 5]. An analogous construction of a vacuum state may be available
in other highly symmetric spacetimes. However, in an arbitrary spacetime lacking an
isometry group, freely falling observers (the curved space generalization of inertial
observers) will not agree on a vacuum state. This further motivates the operational
definition of a particle.

In the next chapter we will introduce a specific model of a particle detector,
the Unruh-DeWitt detector, and use this model to study vacuum excitations, field
entanglement, and relativistic measurements of quantum fields in an operational
manner.

References

1. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press,
Cambridge, 1982)

2. P.C.W. Davies, Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Gen. Phys.
8, 609 (1975)



References 15

3. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time. Phys.
Rev. D 7, 2850 (1973)

4. V.F. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University
Press, Cambridge, 2007)

5. W.G. Unruh, Notes on blackhole evaporation. Phys. Rev. D 14, 870 (1976)



Chapter 3
The Unruh-DeWitt Detector
and Entanglement Harvesting

This chapter begins by introducing the Unruh-DeWitt detector in Sect. 3.1. In
Sect. 3.2 we apply this detector model to the phenomenon of entanglement harvest-
ing in curved spacetimes that admit a Wightman function. In Sect. 3.3 we identify
the field observables that a collection of Unruh-DeWitt detectors measure. We
conclude this chapter in Sect. 3.4 with a summary of the results presented.

3.1 The Unruh-DeWitt Detector

As discussed at the end of Chap. 2, the definition of a particle is ultimately an
operational one that requires the specification of the measuring process used to
detect particles. This requires the specification of the interaction of a particle
detector with a field. This definition is not unique—there are as many definitions
of particle as there are particle detectors. In this section, we describe a commonly
used measuring process known as the Unruh-DeWitt detector [15, 48].

We seek a measuring process that is physically relevant and mathematically
simple. To this end, consider as a measuring apparatus a two-level atom. Let |0〉D
and |1〉D denote the ground state and excited state of the atom (detector), which
are separated by an energy gap �. These states form an orthonormal basis for the
Hilbert space HD � C

2 associated with internal degrees of freedom of the atom,
whose free evolution is governed by the Hamiltonian

H0 = �

2

( |1〉D〈1|D − |0〉D〈0|D ). (3.1)

The atom’s interaction with an electromagnetic field is described by quantum
electrodynamics. For a two-level atom this interaction is well approximated by the
dipole interaction Hamiltonian

Hint = eX · E, (3.2)
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where E is the electric field and eX is the dipole operator, with e being the charge of
the dipole and X = ∫ dx x |x〉〈x| its position operator. This interaction Hamiltonian
is widely used in the field of quantum optics to model the light-matter interaction
[25, 40]. Expanding Hint in terms of the excited and ground states of the atom and
moving to the interaction picture1 yield

HI = ei�τ |1〉D〈0|D ⊗
∫
dx F(x) ·E(t, x)+ e−i�τ |0〉D〈1|D ⊗

∫
dx F∗(x) ·E(t, x),

(3.3)

where F(x) := ψ∗1 (x) xψ0(x) and ψ0(x) := 〈x|0〉 and ψ1(x) := 〈x|1〉 are the
ground state and excited state wave functions in the position basis.2

From Eq. (3.3), we see that the function F(x) acts as a smearing function with
support localized around the atom. We will make the assumption that the spatial
extent of the atom is sufficiently localized so that the smearing function may
be approximated as a delta function F(x) ≈ δ3(x − xD(τ)), where xD(τ) :=
{tD(τ ), xD(τ)} is the trajectory of the atom parametrized in terms of its proper time
τ . This models the atom as coupling to the electric field at a point, which is a good
assumption so long as the spatial extent of the atom is negligible as compared to the
wavelength of the radiation that is resonant with the atom’s energy gap [2].

To arrive at the Unruh-DeWitt interaction Hamiltonian, in Eq. (3.3) we replace
the electric field with a scalar field φ(x) and introduce a switching function χD(τ) ∈
[0, 1], which controls the duration of the interaction between the atom and field.
Doing so yields the Unruh-DeWitt interaction Hamiltonian

HD (τ) = λχD(τ)
(
σ+(τ )+ σ−(τ )

)
⊗ φ [xD(τ)] , (3.4)

where λ� 1 is the interaction strength and we have defined the ladder operators

σ+(τ ) := ei�τ |1〉D〈0|D and σ−(τ ) := e−i�τ |0〉D〈1|D . (3.5)

When the interaction of a two-level atom with the electromagnetic field is approxi-
mated in this way, the atom is referred to as an Unruh-DeWitt detector or simply
detector. While the Unruh-DeWitt interaction Hamilton is unable to capture the
vector nature of the electric field, it has been shown that it approximates well
the light-matter interaction in other regards [2, 27]. For a detailed comparison of
different light-matter interaction models within this context see [33].

The time evolution of the detector and field during the measuring process, that
is, when the detector and field are interacting, is described by the unitary operator
generated by the interaction Hamiltonian in Eq. (3.4)

1In the interaction picture, the interaction Hamiltonian is HI := eiH0tHint e
−iH0t .

2The diagonal elements of HI vanish because 〈0|X|0〉 = 〈1|X|1〉 = 0, which comes from the fact
that ψ0(x) and ψ1(x) are symmetric around x = 0 due to the Coulomb interaction between the
nucleus and electron of the atom being symmetric around x = 0.
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U := T exp

[
−i
∫

dτ HD (τ)

]

= 1+ (−i)
∫

dτ HD (τ)+ (−i)2

2

∫
dτdτ ′ T HD (τ)HD

(
τ ′
)+O

(
λ3
)
,

(3.6)

where the integration is over the interval τ ∈ (−∞,∞) and T is the time ordering
operator defined as T A(t)B(t ′) := θ(t − t ′)A(t)B(t ′)+ θ(t ′ − t)B(t ′)A(t).

Suppose that prior to the measuring process (τ → −∞) the detector is prepared
in the ground state |0〉D and the field in an appropriately defined vacuum state |0〉.
After the measuring process, the final state of the field and detector will be

U |0〉D |0〉

=
(

1− i

∫
dτ HD(τ)− 1

2

∫
dτdτ ′ T HD(τ)HD(τ

′)+O
(
λ3
))
|0〉D |0〉

= |0〉D |0〉 − iλ

∫
dτ χD(τ)e

i�Dτ |1〉D ⊗ φ[xD(τ)] |0〉

− λ2

2

∫
dτdτ ′ χD(τ)χD(τ ′)T

[
σ−(τ )σ+(τ ′)+ σ+(τ )σ−(τ ′)

] |0〉D
⊗ T φ[xD(τ)]φ

[
xD(τ

′)
] |0〉 +O

(
λ3
)
. (3.7)

The final state of the detector alone, ρD ∈ S (HD), is obtained by tracing over the
field degrees of freedom in Eq. (3.7)

ρD := trφ
[
U
( |0〉〈0|D ⊗ |0〉〈0| )U†] =

(
1− PD 0

0 PD

)
+O

(
λ4
)
, (3.8)

where in the last equality we expressed the detector density matrix in the basis
{|0〉D , |1〉D}. PD is the probability that the detector has transitioned to its excited
state

PD := λ2
∫

dτdτ ′ χD(τ)χD(τ ′)e−i�(τ−τ
′)W

(
xD(τ), xD(τ

′)
)
, (3.9)

and W
(
x, x′

)
is the vacuum Wightman function

W(x, x′) := 〈0|φ(x)φ(x′) |0〉 . (3.10)

As the field φ(x) satisfies the wave equation in Eq. (2.4), so too does the Wightman
function [

�x +m2 + ξR(x)
]
W(x, x′) = 0, (3.11)
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where the subscript x on �x denotes that the derivatives appearing in the definition
of the d’Alembertian below Eq. (2.4) are with respect to x. The Wightman function
is a distribution on smooth functions, and thus when evaluating the integral in the
definition of PD the principle value prescription must be employed. If instead the
field were in a different state, then the transition probability of the detector would
still be given by Eq. (3.9) with the vacuum Wightman function replaced with the
appropriate Wightman function describing the state of the field.

As discussed by Schlicht [38], we should expect a detector on a time-dependent
trajectory or in a dynamic spacetime to react differently at different times. However,
as constructed the transition probability has no such time dependence. For this
reason, one may be interested in the transition rate of a detector which can depend
on time. We define the transition rate of a detector as follows.

The probability that the detector has transitioned from its ground state to its
excited state at the detector’s proper time τ is given by Eq. (3.9) with the upper
bounds of the integration replaced with τ

PD(τ) = λ2
∫ τ

−∞
dt

∫ τ

−∞
dt ′ χD(t)χD(t ′)e−i�(t−t

′)W
(
xD(t), xD(t

′)
)
. (3.12)

Following the approach of Schlicht [38], we introduce the integration variables u :=
t and s := t − t ′ for t > t ′ and u := t ′ and s := t ′ − t for t < t ′. This leads to

PD(τ) = λ2
∫ τ

−∞
du

∫ ∞
0

ds χD(u)χD(u− s)
[
e−i�sW(xD(u), xD(u− s))

+ ei�sW(xD(u− s), xD(u))
]

= 2λ2
∫ τ

−∞
du

∫ ∞
0

ds χD(u)χD(u− s)Re
[
e−i�sW(xD(u), xD(u− s))

]
.

(3.13)

The transition rate ṖD(τ ) is then defined as the derivative of the transition
probability with respect to the proper time of the detector

ṖD(τ ) := d

dτ
PD(τ)

= 2λ2
∫ ∞

0
ds χD(τ)χD(τ − s)Re

[
e−i�sW(xD(τ), xD(τ − s))

]
.

(3.14)

In the limit where the switching function approaches the characteristic function
on the interval [τ0, τ ]

χD(t) =
{

1 τ0 ≤ t ≤ τ

0 otherwise
, (3.15)
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the transition rate becomes

ṖD(τ ) = λ2
(

1

4
+ 2

∫ �τ

0
ds Re

[
e−i�sW(xD(τ), xD(τ − s))

])
, (3.16)

where �τ := τ − τ0. This limit was explicitly evaluated by Louko and Satz [24]
by observing that when the Wightman function appearing under the integral is
represented by an iε-regularized function, the regulator limit ε → 0 and the limit
in which the switching function approaches the characteristic function (the sharp
switching limit), do not in general commute and the first must be taken before the
second.

3.2 Entanglement Harvesting in Curved Spacetimes

Entanglement is a uniquely quantum property of a composite system, such that the
state of the entire system cannot be fully specified by the individual states of each
component. Entanglement was first discussed by Einstein, Podolsky, and Rosen,
who used an example of an entangled state to argue that quantum mechanics is
incomplete [17]. Shortly after, Schrödinger introduced the term ‘entanglement’ [39],
describing the phenomena as

. . . [not] one, but rather the characteristic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought.

In quantum computation, entanglement is used as a resource in many quantum
protocols to give a dramatic speed-up over the corresponding classical protocol and
can be used to construct unconditionally secure cryptographic systems [11, 29].

Formally, a quantum system composed of two subsystems A and B described
by the Hilbert spaces HA and HB , respectively, is associated with the Hilbert space
HA ⊗HB . A state ρAB ∈ S(HA ⊗HB) is said to be factorized if it is of the form
ρAB = ρA ⊗ ρB . If ρAB is a convex combination of factorized states,

ρAB =
∑
i

pi ρ
(i)
A ⊗ ρ

(i)
B , (3.17)

where pi > 0 and
∑

i pi = 1, then ρAB is said to be separable. If ρAB is not
separable, it is entangled. These definitions of factorized, separable, and entangled
states naturally generalize to systems composed of more than two subsystems [23];
however, such generalizations will not be needed for our purposes.

During the 1960s Bell, through the inequality that now bears his name [6, 7],
placed an upper bound on the correlations predicted by any theory compatible
with local realism.3 He then demonstrated that the phenomenon of entanglement

3As stated in [1], a local realist theory is one where physical properties are defined prior to and
independent of measurement, and no physical influence can propagate faster than the speed of
light.
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allows for the violation of his inequality, and consequently the model of local
realism assumed by Einstein, Podolsky, and Rosen was incompatible with quantum
mechanics. The first experimental violation of Bell’s inequality was performed in
1972 by Freedman and Clauser [19], in which correlations between the polarization
of photons emitted in an atomic cascade of calcium were measured and shown to
violate Bell’s inequality. Following this, numerous experiments have demonstrated
the violation of Bell’s inequality in a range of different experimental setups and have
aimed at closing various loopholes [1].

Over the past three decades the role entanglement plays in quantum field theory
has been explored, finding applications in disparate areas of physics including
the study of critical phenomena in condensed matter systems [4, 30, 52], in the
description of non-classical states of light within the field of quantum optics [25, 53],
in explaining the origin of black hole entropy [10, 12, 43], and perhaps most
spectacularly in the anti-de Sitter/conformal field theory correspondence in which
the entanglement entropy associated with a region of a conformal field theory
located on the boundary of anti-de Sitter space is related to minimal surfaces in
the bulk [36].

Within the framework of algebraic quantum field theory, Summers and Werner
[44–46] demonstrated that the vacuum state of a free quantum field in Minkowski
space, as seen by local inertial observers, is entangled, and that the correlations
seen by these observers are strong enough to violate Bell-type inequalities, even
if these observers are in spacelike separated regions. This result is surprising—it
suggests that no source of entanglement is necessary to detect a violation of Bell’s
inequality, the observation of vacuum fluctuations suffices. However, to the author’s
knowledge, algebraic quantum field theory has yet to address Bell inequalities in
curved spacetimes [18, 21].

An operational approach to the study of the entanglement structure of the vacuum
state of a quantum field theory was introduced in 1991 by Valentini [49]. He showed
that two initially uncorrelated atoms separated by a distance R interacting with the
electromagnetic vacuum exhibit nonlocal correlations after a time t < R/c. This
implies that the atoms become entangled even if they remain spacelike separated
throughout their interaction with the electromagnetic vacuum. He suggested that
these correlations can either be interpreted as non-local photon propagation or as a
consequence of non-locally correlated vacuum fluctuations.

In 2002 Reznik et al. [34, 35] demonstrated a similar effect using two Unruh-
DeWitt detectors interacting locally with the vacuum state of a scalar field, and
using three detectors showed that the Minkowski vacuum exhibits genuine non-local
tripartite correlations, which are in principle strong enough to violate the Svetlichny
inequality4 [41].

This process of localized detectors extracting entanglement/nonlocal correlations
from the vacuum state of a quantum field has since become known as entanglement

4The Svetlichny inequality is a Bell-like inequality whose violation is sufficient but not necessary
for genuine tripartite nonlocal correlations [47].
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harvesting [37], and has been studied in a variety of different situations, ranging
from the extraction of resources from the vacuum [26], to entanglement generation
between hydrogen-like atoms [32, 33], and even shown to depend on the underlying
spacetime geometry [50] and topology [28]. We will refer to this process as the
entanglement harvesting protocol.

The operational approach of Valentini and Reznik, in which the measurement
of the field is explicitly described by an appropriate interaction with a measuring
apparatus (atoms and Unruh-DeWitt detectors, respectively), emphasizes that the
question of whether the vacuum state of a quantum field theory is seen to be
entangled depends on the measurement process itself. This is analogous to how
the notion of a particle depends on the measurement process, as discussed at the
end of Chap. 2. In particular, whether the field is seen to be entangled can depend
on the observer’s motion. For example, Salton et al. [37] have demonstrated that the
amount of entanglement in the Minkowski vacuum as seen by inertial detectors
differs from that seen by uniformly accelerating detectors. This is analogous to
the Unruh effect, in which uniformly accelerating observers disagree with inertial
observers on the particle content of a given vacuum state.

The purpose of this section is to generalize the approach of Reznik et al.
[34, 35] to Unruh-DeWitt detectors following arbitrary timelike trajectories through
curved spacetimes admitting a Wightman function. This will allow for the study
of the effect spacetime topology (Chap. 4) and gravity (Chap. 5) have on vacuum
entanglement.

The advantage of probing the entanglement structure of a quantum field theory
with Unruh-DeWitt detectors is (1) the approach is manifestly operational—the
measuring process is explicitly described and the observer’s motion can easily be
taken into account; and (2) the mathematical machinery is simple as compared to
algebraic quantum field theory and other methods [13, 14].

We consider two initially unexcited Unruh-DeWitt detectors which interact
with a quantum field prepared in a suitably defined vacuum state for a finite
period of time. The joint state of the two detectors after the interaction with the
field has ceased is derived to all orders in the interaction strength between the
detectors and field, and the leading order contribution is expressed in terms of the
Wightman function. In general, this state can be entangled. Various measures of this
entanglement are computed.

3.2.1 The Joint State of Two Detectors

To probe the entanglement structure of a scalar field, consider two Unruh-DeWitt
detectors labelled by A and B described by the Hilbert spaces HA and HB ,
respectively. Suppose these detectors follow the trajectories xA(τA) and xB(τB),
which are parametrized by the detectors’ proper times, τA and τB . These detectors
couple to a real scalar field φ associated with the Hilbert space Hφ via the interaction
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Hamiltonians HA(τA) and HB(τB), which are given in Eq. (3.4). The evolution of
these detectors and the field is described by the unitary operator

U = T exp

[
−i
∫

dt

(
dτA

dt
HA[τA(t)]+ dτB

dt
HB [τB(t)]

)]

= 1− i

∫
dt

(
dτA

dt
HA[τA(t)]+ dτB

dt
HB [τB(t)]

)

− 1

2

∫
dtdt ′ T

[
dτA

dt

dτA

dt ′
HA[τA(t)]HA

[
τA(t

′)
]

+dτB

dt

dτB

dt ′
HB [τB(t)]HB

[
τB(t

′)
]

+dτA

dt

dτB

dt ′
HA[τA(t)]HB

[
τB(t

′)
]

+dτB

dt

dτA

dt ′
HB [τB(t)]HA

[
τA(t

′)
]]+O

(
λ3
)
, (3.18)

where we have chosen to evolve the field and detectors with respect to an appropriate
coordinate time t with respect to which the vacuum state of the field is defined. The
integrals appearing in Eq. (3.18) are over the interval t ∈ (−∞,∞).

Suppose the two detectors are initially (t →−∞) prepared in their ground states,
|0〉A and |0〉B , and the field in an appropriately defined vacuum state |0〉, so that the
initial state of the two detectors and field together is given by |�i〉 = |0〉A |0〉B |0〉 ∈
HA ⊗HB ⊗Hφ . After the interaction (t →∞), the joint state of the two detectors
and field is

∣∣�f

〉 = U |�i〉 =
∑
n

λn
∣∣∣�(n)

f

〉
, (3.19)

where
∣∣∣�(n)

f

〉
is the nth order contribution to the final state

∣∣�f

〉 ∈ HA⊗HB ⊗Hφ .

Defining ηD(t) := χD(τD(t))dτD/dt and φD(t) := φ[xD(t)] where D ∈ {A,B},
the first three terms in Eq. (3.19) are given below.

Zeroth-Order in λ

∣∣∣�(0)
f

〉
= |0〉A |0〉B |0〉 . (3.20)

First-Order in λ

∣∣∣�(1)
f

〉
= −i

∫
dt

(
ηA(t)e

i�AτA(t) |1〉A |0〉B ⊗ φA(t) |0〉

+ ηB(t)e
i�BτB(t) |0〉A |1〉B ⊗ φB(t) |0〉

)
. (3.21)
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Second-Order in λ

∣∣∣�(2)
f

〉
= −1

2

∫
dtdt ′

(
ηA(t)ηA(t

′)T
[
σ−A (t)σ+A (t ′)+ σ+A (t)σ−A (t ′)

] |0〉A |0〉B
⊗ T φA(t)φA(t

′) |0〉
+ ηB(t)ηB(t

′) |0〉A ⊗ T
[
σ−B (t)σ+B (t ′)+ σ+B (t)σ−B (t ′)

] |0〉B
⊗ T φA(t)φA(t

′) |0〉
)

− 1

2

∫
dtdt ′ ηA(t)ηB(t ′)ei[�AτA(t)+�BτB(t

′)] |1〉A |1〉B

⊗
(
T φB(t

′)φA(t)+ T φA(t)φB(t
′)
)
|0〉 . (3.22)

The reduced state of the two detectors ρAB ∈ S (HA ⊗HB) after their
interaction with the field has ceased is obtained from

∣∣�f

〉
by tracing out the field

ρAB := trφ
( ∣∣�f

〉〈
�f

∣∣ ) =∑
n,m

λn+m
∫

dμ 〈μ|
(∣∣∣�(n)

f

〉〈
�

(m)
f

∣∣∣
)
|μ〉 , (3.23)

where |μ〉 is an element of the Fock basis of the field Hilbert space, which is used
to perform the partial trace.

Observe that for even (odd) n, the state
∣∣�(n)(tf )

〉
has an even (odd) number

of excitations in the field since the field operator φD( · ) is applied to the field
vacuum |0〉 an even (odd) number of times. As field states with an even number
of excitations are orthogonal to field states with an odd number of excitations,
only terms where both n and m are either even or odd survive the partial trace
in Eq. (3.23). Also observe that for even n, either both detectors are excited or
unexcited in the state

∣∣�(n)(tf )
〉
; for odd n, one detector is excited and the other is

not in the state
∣∣�(n)(tf )

〉
. Combining these observations [28], one concludes that

the reduced density matrix of the two detectors to all orders of perturbation theory,
in the basis {|0〉A |0〉B , |0〉A |1〉B , |1〉A |0〉B , |1〉A |1〉B}, is

ρAB =

⎛
⎜⎜⎝
ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1− PA − PB 0 0 X

0 PB C 0
0 C∗ PA 0
X∗ 0 0 0

⎞
⎟⎟⎠+O

(
λ4
)
, (3.24)

where PA and PB are the transition probabilities of detectors A and B defined in
Eq. (3.9), and
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C := λ2
∫

dtdt ′ ηB(t)ηA(t ′)ei[�BτB(t)−�AτA(t
′)]W

(
xA(t

′), xB(t)
)
, (3.25)

X := −λ2
∫
t>t ′

dtdt ′
[
ηB(t)ηA(t

′)e−i[�BτB(t)+�AτA(t
′)]W

(
xA(t

′), xB(t)
)

+ ηA(t)ηB(t
′)e−i[�AτA(t)+�BτB(t

′)]W
(
xB(t

′), xA(t)
) ]

. (3.26)

The leading order contribution to ρ44 = E + O
(
λ6
)

is denoted by E, which is
derived in detail in Appendix A with the result

E = |X|2 + |C|2 + PAPB. (3.27)

The final state ρAB of the detectors is an example of an X-state [3], the name
being due to the density matrix’s resemblance with the letter ‘X’.

The reduced state of detector A is

ρA := trB ρAB =
(
ρ11 + ρ22 0

0 ρ33 + ρ44

)
=
(

1− PA 0
0 PA

)
+O

(
λ4
)
, (3.28)

and the reduced state detector B is

ρB := trA ρAB =
(
ρ11 + ρ33 0

0 ρ22 + ρ44

)
=
(

1− PB 0
0 PB

)
+O

(
λ4
)
. (3.29)

The reduced states ρA ∈ S (HA) and ρB ∈ S (HB) coincide with the density matrix
of the single detector in Eq. (3.8). This is an important consistency requirement—if
this was not the case, it would imply that measurements of either detector could
infer that another potentially spacelike separated detector is interacting with the
field, allowing for the possibility of superluminal signalling.

3.2.2 Quantifying the Entanglement in ρAB

Having derived the state ρAB ∈ S (HA ⊗HB) of two Unruh-DeWitt detectors after
their interaction with the vacuum state of a scalar field, Eq. (3.24), we now wish
to quantify how entangled this state is. If the detectors remain spacelike separated
throughout their entire interaction with the field, then any entanglement that results
between the detectors must have been extracted from the vacuum since the detectors
would not have been able to interact directly. In this situation, the entanglement
present in ρAB is an indicator of the entanglement between the regions of the field
with which the detectors interacted.

If the detectors do not remain spacelike separated for the duration of their
interaction with the field, the entanglement present in ρAB may still be a result
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of entanglement extracted from the vacuum, but it may also be a result of an
interaction between the detectors mediated by the field. Consequently, in this case
one cannot conclude that the entanglement contained in ρAB has been extracted
from the vacuum alone. However, as we will see in Chaps. 4 and 5 the entanglement
that results when the detectors are not spacelike separated can still depend on the
properties of the spacetime itself.

As a first observation, note that C and X defined in Eqs. (3.25) and (3.26) are an
integration over the Wightman function W(x, x′) evaluated along the trajectories of
the detectors xA(τA) and xB(τB). If W(x, x′) vanishes for spacetime points x and
x′ infinitely far apart, as is the case in Minkowski space, then for detectors infinitely
far apart C and X vanish too, and the final state of the two detectors factorizes

ρAB = ρA ⊗ ρB. (3.30)

Quantifying the amount of entanglement in a given state is done by the use of
entanglement measures [11]. Given a state ρAB ∈ S (HA ⊗HB), an entanglement
measure E(ρAB) is a map

E : S (HA ⊗HB)→ R
+, (3.31)

such that E(ρAB) = 0 if ρAB is separable, and E(ρAB) does not increase on average
under local operations on HA and HB and classical communication between the
parties associated with HA and HB .

In general, the final state of the two detectors ρAB will be mixed, and there-
fore the entanglement entropy is not a suitable measure of entanglement [11].
Consequently, in what follows we introduce three entanglement measures that are
suitable to characterize the entanglement in the state ρAB , as well as a measure of
correlations in this state, and explicitly evaluate them for the density matrix given
in Eq. (3.24).

Negativity

The Peres-Horodecki criterion asserts that a state ρAB ∈ S(HA ⊗HB) is entangled
if ρAB does not remain positive under partial transposition5 with respect to either
HA or HB . If HA � C

2 and HB ∈ {C2,C3}, then ρAB is entangled if and only if
it does not remain positive under partial transposition with respect to either HA or
HB [22, 31].

The negativity is defined as [51]

N (ρAB) :=
∥∥∥ρ�A

AB

∥∥∥− 1

2
=
∑
λi<0

|λi | , (3.32)

5The partial transpose of the state ρAB ∈ S(HA ⊗HB) with respect to HA is ρ
�A

AB
:=

[T ⊗ I] (ρAB), where T : S(HA) → S(HA) is the transposition map.
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where �A denotes the partial transpose with respect to A, ‖·‖ denotes the trace
norm, and the sum in the last equality is over the negative eigenvalues λi of ρ�A

AB .

The negativity quantifies the degree to which ρ
�A

AB fails to be positive [11, 29]. The
negativity vanishes on separable states and does not increase under local operations
and classical communication, and therefore the negativity is an entanglement
measure.

The partial transpose of the two-detector density matrix given in Eq. (3.24) is

ρ
�A

AB =

⎛
⎜⎜⎝
ρ11 0 0 ρ∗23
0 ρ22 ρ∗14 0
0 ρ14 ρ33 0
ρ23 0 0 ρ44

⎞
⎟⎟⎠ , (3.33)

with eigenvalues

λ1 = ρ22 + ρ33

2
−
√(

ρ22 − ρ33

2

)2

+ |ρ14|2

= PA + PB

2
−
√(

PA − PB

2

)2

+ |X|2 +O
(
λ4
)
, (3.34a)

λ2 = ρ22 + ρ33

2
+
√(

ρ22 − ρ33

2

)2

+ |ρ14|2

= PA + PB

2
+
√(

PA − PB

2

)2

+ |X|2 +O
(
λ4
)
, (3.34b)

λ3 = ρ11 + ρ44

2
−
√(

ρ11 − ρ44

2

)2

+ |ρ23|2

= |X|2 + PAPB +O
(
λ6
)
, (3.34c)

λ4 = ρ11 + ρ44

2
+
√(

ρ11 − ρ44

2

)2

+ |ρ23|2

= 1− PA − PB +O
(
λ4
)
. (3.34d)

The only possible negative eigenvalue of ρ
�A

AB is λ1, and thus, by the Peres-
Horodecki criterion, ρAB is entangled if and only if

λ1 < 0 ⇒ |ρ14|2 > ρ22ρ33 ⇒ |X|2 > PAPB. (3.35)
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Note that the second equality in Eq. (3.34c), and consequently the above condition,
required knowledge of the leading order contribution to ρ44 given in Eq. (3.27),
which is O

(
λ4
)

[28].
Applying Eq. (3.36), the negativity of the final state of the two detectors in

Eq. (3.24) is

N (ρAB) = max

⎡
⎣0,

√
|X|2 +

(
PA − PB

2

)2

− PA + PB

2

⎤
⎦+O

(
λ4
)
. (3.36)

The advantage of using the negativity to quantify entanglement over other
measures is that it is comparatively easy to compute. Consequently, the literature
on entanglement harvesting has focused exclusively (with the exception of [28]) on
the negativity to quantify the entanglement that results between two Unruh-DeWitt
detectors. However, the negativity does not have a direct operational interpretation.
For this reason, we consider the entanglement of formation in the next section.

Concurrence and the Entanglement of Formation

The entanglement of formation Ef (ρAB) is an entanglement measure for bipartite
quantum states ρAB ∈ S(HA ⊗HB) defined as the lowest entanglement entropy of
any ensemble realizing ρAB [8], explicitly

Ef (ρAB) := min
∑
i

piE(ψi), (3.37)

where the minimization is carried out over all pure state decompositions of ρAB ,
that is, the ensembles {pi, |ψi〉} such that ρAB :=∑i pi |ψi〉〈ψi |; E(ψi) is the von
Neumann entropy of either of the two subsystems

E(ψi) := − tr ρAi
log ρAi

= − tr ρBi
log ρBi

, (3.38)

where ρAi
:= trB |ψi〉〈ψi | and ρBi

:= trA |ψi〉〈ψi |. The entanglement of formation
has an operational interpretation as the number of Bell states required to prepare
ρAB via local operations and classical communication [8].

The solution to the minimization problem defining the entanglement of formation
is [54]

Ef (ρAB) := h

(
1+√1− C(ρAB)2

2

)
, (3.39)

where h(x) := −x log x − (1− x) log(1− x), and C(ρAB) is the concurrence

C(ρAB) := max[ 0, w1 − w2 − w3 − w4 ] , (3.40)
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where the wi’s are the square roots of the eigenvalues of the matrix ρABρ̃AB ;
ρ̃AB :=

(
σy ⊗ σy

)
ρ∗AB

(
σy ⊗ σy

)
and σy is the Pauli y matrix. As the entanglement

of formation is a monotonically increasing function of the concurrence and ranges
from 0 to 1 as the concurrence goes from 0 to 1, the concurrence too is a measure
of entanglement [54].

For the joint state ρAB of the two detectors given in Eq. (3.24), the square root of
the eigenvalues of ρABρ̃AB is

w1 = √ρ11ρ44 + |ρ14| =
√
|X|2 + |C|2 + PAPB + |X| +O

(
λ4
)
, (3.41a)

w2 = √ρ22ρ33 + |ρ23| =
√
PAPB + |C| +O

(
λ4
)
, (3.41b)

w3 = √ρ11ρ44 − |ρ14| =
√
|X|2 + |C|2 + PAPB − |X| +O

(
λ4
)
, (3.41c)

w4 = √ρ22ρ33 − |ρ23| =
√
PAPB − |C| +O

(
λ4
)
. (3.41d)

If ρAB is entangled, the Peres-Horodecki criterion, |X|2 > PAPB , implies that the
largest eigenvalue of ρABρ̃AB is w1. Using Eq. (3.40), the concurrence is seen to be

C(ρAB) = 2 max
[

0, |ρ14| − √ρ22ρ33
] = 2 max

[
0, |X| −√PAPB

]
+O

(
λ4
)
.

(3.42)

If the transition probabilities of the two detectors are equal, PA = PB , the
concurrence of ρAB is given by twice the negativity, C(ρAB) = 2N (ρAB) [28].

From the expression for the concurrence given in Eq. (3.42), we see that the final
state of the two detectors ρAB is most entangled when the product of the transition
probabilities of both detectors is small and the absolute value of the off diagonal
element X is large. This observation will be important for the interpretation of the
results presented in Chaps. 4 and 5.

Correlations

While the negativity, concurrence, and entanglement of formation are useful for
quantifying entanglement, they are not directly accessible by local measurements of
the detectors. Consequently, one may be interested in the correlation between the
outcomes of local measurements of each detector.

As the final state of either detector is diagonal in the {|0〉D , |1〉D} basis,
Eqs. (3.28) and (3.29), the only nontrivial measurement is in this basis. The
correlation between outcomes of these measurements is defined as

corr (ρAB) := cov (ρAB)

var (ρA) var (ρB)
, (3.43)



3.3 Detector Observables 31

where

cov (ρAB) := tr (ρAB σz ⊗ σz)− tr (ρAσz) tr (ρBσz) ,

var (ρD) := tr
(
ρDσ

2
z

)
− tr (ρDσz)

2 ,

for D ∈ {A,B}; corr (ρAB) will be referred to as the correlation function.
Evaluating corr (ρAB) for the final state of the two detectors ρAB in Eq. (3.24)

yields

corr (ρAB) = ρ44 − (ρ22 + ρ44) (ρ33 + ρ44)√
(1− ρ22 − ρ44) (ρ22 + ρ44) (1− ρ33 − ρ44) (ρ33 + ρ44)

= |X|
2 + |C|2√
PAPB

+O
(
λ4
)
. (3.44)

3.3 Detector Observables

Sections 3.1 and 3.2 have emphasized that an Unruh-DeWitt detector, through the
interaction Hamiltonian in Eq. (3.4), performs a measurement of a quantum field.
The purpose of this section is to identify the measurement model a collection
of Unruh-DeWitt detectors defines, and to identify the field observables6 these
detectors measure as a function of their initial state and trajectories.

A measurement procedure begins by coupling the system that is to be measured
with a probe system. After some time, the system and probe are decoupled, and a
measurement is carried out on the probe system only. As a result of the coupling
stage, the system and probe become correlated, and a measurement of the probe
system gives information about the system that is to be measured.

Following [20], we will now formalize this measurement procedure. Let A be an
observable we wish to measure on a system associated with the Hilbert space H,
with possible outcomes A(X) ∈ E(H) where X labels the possible outcomes of A;
A(X) will be referred to as the POVM element associated with the outcome X. The
collection of POVM elements {A(X) ∀X} defines the observable A.

Suppose that we prepare a probe system in the state |ξ 〉 ∈ K, where K is
the Hilbert space associated with the probe system, and the interaction between
the probe and system to be measured is described by a completely positive trace

6An observable is defined on a measurable space (�,F), where � is a sample space and F is
a collection of subsets of � (F is a σ -algebra); (�,F) is the outcome space of the observable.
An observable A is a map A : F → E (H), where F is the space of possible outcomes of a
measurement of the observable A on a system associated with the Hilbert space H, such that A
is a positive operator valued measure (POVM). A POVM is a map A : F → E (H) such that (a)
A(∅) = 0, (b) A(�) = I , and (c) A(∪iXi) =∑i A(Xi) for any sequence {Xi} of disjoint sets in
F ; for X ∈ F , A(X) are referred to as POVM elements. In other words, a mapping A : F → E (H)

is a POVM if and only if the mapping X �→ tr [ρA(X)] defines a probability measure for every
state ρ ∈ S (H).
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preserving map

V : S(K⊗H)→ S(K⊗H). (3.45)

Suppose that after the interaction has ceased, we measure the observable F with
outcomes F(X) ∈ E(K) on the probe system. The quadruple M = {K, |ξ 〉 ,V, F }
defines a measurement model of the observable A if it satisfies the probability
reproducibility condition [20]

tr
[
ρA(X)

] = tr
[
V
[ |ξ 〉〈ξ | ⊗ ρ

]
(F (X)⊗ I )

]
, (3.46)

for all F(X) and ρ ∈ S(H). This condition asserts that a measurement F of the
probe, after the interaction with the system to be measured has ceased, results in the
same probabilities as if a measurement of A was performed directly on the system.

However, it is important to note that the probability reproducibility condition
can be applied in the opposite direction: a given measurement model M =
{K, |ξ 〉 ,V, F } defines an observable A on H given by

A(X) := 〈ξ |V∗[F(X)⊗ I
]|ξ 〉 ∈ E(H), (3.47)

where V∗ is the dual of V . We will apply the probability reproducibility condition
in this manner to answer the question: Which field observables can a collection of
Unruh-DeWitt detectors measure?

Consider a collection of N detectors associated with the Hilbert space K =⊗
i Hi , where Hi is the Hilbert space describing the ith detector. Suppose these

detectors are used collectively as a probe system to make a measurement of a scalar
field φ associated with the Hilbert space Hφ . Suppose that prior to the interaction
with the field the detectors are prepared in the state |ξ 〉 ∈ K and the interaction
between the probe and field is described by the interaction Hamiltonian

HI (t) = λ
∑
i

μi(t)⊗ g[xi(t)], (3.48)

where μi(t) ∈ Ls(Hi ) is a self-adjoint operator on Hi , g[xi(t)] =
g[φ[xi(t)], π [xi(t)]] ∈ Ls(H) is a function of the field operator φ and its conjugate
momentum π evaluated along the ith detector’s trajectory xi(t), and t is a suitably
chosen coordinate time. For the Unruh-DeWitt detector considered in Sects. 3.1
and 3.2, Hi � C

2, μi(t) = ηi(t)
[
σ+(t)+ σ−(t)

]
, and g[xi(t)] = φ[xi(t)]. The

channel describing the measurement interaction is V[ · ] := U [ · ]U†, where

U = T exp

[
−iλ

∫
dt
∑
i

μi(t)⊗ g[xi(t)]
]

= I + (−i)λ
∑
i

∫
dt μi(t)⊗ g[xi(t)]

+ (−i)2

2
λ2
∑
i,j

∫
dtdt ′ T

(
μi(t)μj (t

′)⊗ g[xi(t)]g[xj (t ′)]
)
+O

(
λ3
)
.

(3.49)
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Finally, after the interaction with the field has ceased, suppose a measurement of
the observable F , with outcomes F(X) ∈ E (K), is made on the final state of the
detectors. The set

M =
{
K =

⊗
i

Hi , |ξ 〉 ∈ K, V[ · ] = U [ · ]U†, F

}
, (3.50)

constitutes a measurement model and in turn defines an observable A on the scalar
field φ with outcomes A(X) ∈ E(H) given by Eq. (3.47)

A(X) :=
〈
ξ |U†(F(X)⊗ I

)
U |ξ

〉

= 〈ξ |F(X)|ξ 〉 I + iλ

∫
dt
∑
i

〈ξ | [μi(t)⊗ g[xi(t)], F (X)⊗ I ] |ξ 〉

+ (iλ)2

2!
∫

dtdt ′

×
∑
j,i

T
〈
ξ | [μi(t)⊗ g[xi(t)],

[
μj (t)⊗ g[xj (t)], F (X)⊗ I

]] |ξ 〉

+O
(
λ3
)

= 〈ξ |F(X)|ξ 〉 I + iλ

∫
dt
∑
i

〈ξ | [μi(t), F (X)] |ξ 〉 g[xi(t)]

+ (iλ)2

2!
∫

dt ′dt

×
∑
j,i

T
〈
ξ | [μj (t

′)⊗ g[xj (t ′)], [μi(t), F (X)]⊗ g[xi(t)]
] |ξ 〉+O

(
λ3
)

= 〈ξ |F(X)|ξ 〉 I + iλ

∫
dt
∑
i

〈ξ | [μi(t), F (X)] |ξ 〉 g[xi(t)]

+ (iλ)2

2!
∫

dt ′dt
∑
j,i

T
( 〈
ξ |μj (t

′) [μi(t), F (X)] |ξ 〉 g[xj (t ′)]g[xi(t)]

− 〈ξ | [μi(t), F (X)]μj (t
′)|ξ 〉 g[xi(t)]g[xj (t ′)]

)
+O

(
λ3
)
. (3.51)

Swapping the integration variables, t ↔ t ′, and summation indices, i ↔ j , in
the second order term and assuming [μi(t), μj (t

′)] = 0, as is the case for Unruh-
DeWitt detectors, the second order term in Eq. (3.51) simplifies to

(iλ)2
∫

dt ′dt
∑
i,j

Re
[ 〈
ξ |μj (t

′) [μi(t), F (X)] |ξ 〉
]
T g[xj (t ′)]g[xi(t)]. (3.52)
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Defining the functions

f (0)(X) := 〈ξ |F(X)|ξ 〉 , (3.53a)

f
(1)
i (X; t) := i 〈ξ | [μi(t), F (X)] |ξ 〉 , (3.53b)

f
(2)
j i (X; t ′, t) := i2 Re

[ 〈
ξ |μj (t

′) [μi(t), F (X)] |ξ 〉
]
, (3.53c)

A(X) becomes

A(X) = f (0)(X)I + λ
∑
i

∫
dt f

(1)
i (X; t)g[xi(t)]

+ λ2
∑
j,i

∫
dt ′dt f (2)

j i (X; t ′, t)T g[xj (t ′)]g[xi(t)] +O
(
λ3
)
. (3.54)

From Eq. (3.54), we see that at zeroth order in the interaction strength A(X) is
proportional to the identity; the first order contribution to A(X) is the operator
g[xi(t)] appearing in the interaction Hamiltonian in Eq. (3.48) smeared over the
detectors’ trajectories by the function f

(1)
i (X; t); and the second order contribution

is the time ordered product T g[xj (t ′)]g[xi(t)] smeared over the detectors trajecto-

ries with the function f
(2)
j i (X; t ′, t). Note that the analysis above was not specific to

Unruh-DeWitt detectors.
Having now constructed the field observable A defined by a collection of

detectors prepared in an arbitrary pure state |ξ 〉 moving along trajectories xi(t),
through the probability reproducibility condition, Eq. (3.46), one can easily compute
the probability of different outcomes X of various measurements of observables F
on the collection of detectors.

3.3.1 Example: Single Unruh-DeWitt Detector Observables

As an example of an application of the above measurement model, let us compute
the observables measured by a single Unruh-DeWitt detector moving along the
trajectory xD(t). As was done in Sect. 3.1, let us consider the detector to be initially
in its ground state |ξ 〉 = |0〉D ∈ K � C

2. The interaction between the scalar field
and detector will be given by Eq. (3.48), which corresponds to g[xD(t)] = φ[xD(t)]
and

μD(t) := ηD(t)
(
ei�τ(t)σ+ + e−i�τ(t)σ−

)
, (3.55)

where σ+ = |1〉D〈0|D and σ− = |0〉D〈1|D . Suppose that after the interaction with
the field, the measurement of the detector is a projective measurement described by
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the POVM elements

F := {P1 := |a〉D〈a|D , P2 := I − |a〉D〈a|D
} ∈ E(K), (3.56)

for some |a〉 ∈ K, with outcomes X1 and X2 corresponding to P1 and P2,
respectively. As the measurement of the detector has two outcomes, so will the field
observable A(X) defined by this measurement model.

To compute the POVM elements A(X) defining A, we must evaluate the
smearing functions given in Eq. (3.53). Beginning with f (0)(X)

f (0)(X1) := 〈ξ |F(X1)|ξ 〉 = 〈0|P1|0〉 = |〈a|0〉|2 , (3.57a)

f (0)(X2) := 〈ξ |F(X2)|ξ 〉 = 〈0|P2|0〉 = 1− |〈a|0〉|2 , (3.57b)

where we have dropped the subscript D for clarity. The first order smearing function
f (1)(X; t) is

f (1)(X1; t) := i 〈ξ | [μD(t), F (X1)] |ξ 〉
= iηD(t)

(
ei�τ(t)

〈
0| [σ+, P1

] |0〉+ e−i�τ(t)
〈
0| [σ−, P1

] |0〉 )

= iηD(t)
(
− ei�τ(t) 〈0|a〉 〈a|1〉 + e−i�τ(t) 〈1|a〉 〈a|0〉

)

= 2ηD(t) Im
[
ei�τ(t) 〈0|a〉 〈a|1〉

]
, (3.58a)

f (1)(X2; t) := i 〈ξ | [μD(t), F (X2)] |ξ 〉
= −2ηD(t) Im

[
ei�τ(t) 〈0|a〉 〈a|1〉

]
, (3.58b)

and the second order smearing function f (2)(X; t ′, t) is

f (2)(X1; t ′, t) := i2 Re
[ 〈
ξ |μD(t

′) [μi(t), F (X1)] |ξ
〉 ]

= −ηD(t ′)ηD(t)Re
[
e−i�τ(t ′) 〈1| [μD(t), P1] |0〉

]

= ηD(t
′)ηD(t)Re

[
e−i�[τ(t ′)−τ(t)]

(
|〈a|1〉|2

)
− |〈a|0〉|2

]
,

(3.59a)

f (2)(X2; t ′, t) := i2 Re
[ 〈
ξ |μD(t

′) [μi(t), F (X2)] |ξ
〉 ]

= −ηD(t ′)ηD(t)Re
[
e−i�[τ(t ′)−τ(t)]

(
|〈a|1〉|2

)
− |〈a|0〉|2

]
.

(3.59b)
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Having computed these smearing functions, the POVM elements defining A are

A(X1) = |〈a|0〉|2 I + 2λ
∫

dt ηD(t) Im
[
ei�τ(t) 〈0|a〉 〈a|1〉

]
φ[xD(t)]

+ λ2
∫

dt ′dt ηD(t ′)ηD(t)Re
[
e−i�[τ(t ′)−τ(t)]

(
|〈a|1〉|2 − |〈a|0〉|2

) ]

× T φ[xD(t ′)]φ[xD(t)] +O
(
λ3
)
, (3.60a)

A(X2) = I − A(X1). (3.60b)

Suppose we are interested in the probability that the detector has transitioned
from its ground state |0〉D to its excited state |1〉D given the field is initially in
the state ρ ∈ S

(
Hφ

)
. This transition probability is given by PD = tr (ρA(X1)),

with |a〉D = |1〉D , which defines the observable F(X) in Eq. (3.56). Explicitly, this
transition probability is given by

PD = λ2
∫

dt ′dt ηD(t ′)ηD(t)Re
[
e−i�[τ(t ′)−τ(t)]

] 〈
T φ[xD(t ′)]φ[xD(t)]

〉
ρ

+O
(
λ3
)

= λ2
∫

dt ′dt ηD(t ′)ηD(t)e−i�[τ(t ′)−τ(t)] 〈φ[xD(t ′)]φ[xD(t)]〉ρ +O
(
λ3
)
,

(3.61)

where 〈 · 〉ρ := tr [ · ρ]. When ρ = |0〉D〈0|D ⊗ |0〉〈0|, with |0〉 ∈ Hφ being an
appropriately defined vacuum state of the field, the transition probability PD given
in Eq. (3.61) reduces to the transition probability computed in Sect. 3.1 in Eq. (3.9).

3.3.2 Remarks and Future Applications

We close this section by making a few remarks on the measurement model presented
above and comment on possible future applications.

1. Although effectively the same, an advantage of considering the field observables
A(X) rather than explicitly evolving a collection of detectors (as was done in
Sect. 3.2) is that one clearly sees that the effect of changing the initial state of
the detectors or the measured observable F is to change the smearing functions
given in Eq. (3.53). In fact, all information about the detector model (size of
Hilbert space, the operator μ(t), and the initial state of the detector) is encoded
in the smearing function. This should allow for easy exploration of the effect of
initially entangled detectors or detectors initially prepared in superpositions on
various measurement tasks in quantum field theory because the only modification
to the field observable A(X) will be to the smearing functions.
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Furthermore, constructing the observables a given detector model measures
provides an algebraic picture in terms of the POVM elements A(X) of possible
physical measurements of a field. This may prove useful in making connections
between the many studies of Unruh-DeWitt detectors and results in algebraic
quantum field theory.

2. One may be able to construct an array of detectors prepared in such a way that
the observables the detector model defines serve as an entanglement witness7

for entanglement between different spacetime regions. This could lead to an
operational formulation of the area law for entanglement in terms of a physical
measurement model.

3. When studying the Unruh effect using uniformly accelerating Unruh-DeWitt
detectors, one usually computes the transition probability PD , which is second
order in the interaction strength, and demonstrates that the final state of the
detector is thermal

ρD = (1− PD) |0〉D〈0|D + PD |1〉D〈1|D ∈ S (K) , (3.62)

with a temperature kBT = �/ ln[(1 − PD)/PD] proportional to the proper
acceleration of the detector [9].

Instead, one may imagine preparing a collection of uniformly accelerating
detectors in an appropriate state |ξ 〉 ∈ K = ⊗i Hi and performing a collective
measurement (not a series of local measurements) of an observable F on the final
state of the detectors, such that a signature of the Unruh effect appears at first
order, rather than second order as in the approach described above. In essence,
what one would be doing is exploring whether quantum phenomena, such as
entanglement between detectors, can be used to create a better thermometer
with which to measure the Unruh temperature, i.e. an observable F that is more
sensitive to acceleration than a measurement of the transition probability.

4. Sorkin [42] has demonstrated that projective measurements of quantum fields
can lead to superluminal signalling if consecutive projective measurements on
the field have support on partial causally connected local regions of spacetime.
This leads to the question: Which observables can be measured by a projective
measurement in relativistic quantum field theory?

In general, the answer to this question is unknown. However, it is known that
some observables, such as a Wilson loop in a non-abelian gauge theory [5] or a
projector onto a one particle state [16, 42], cannot be measured.

To address this issue, Sorkin [42] called for a von Neumann-like analysis of
the measurement process within quantum field theory. The above construction of
detector observables, culminating in the POVM elements in Eq. (3.54), is such an
analysis. It will be fruitful to examine these observables in relation to the issues
raised by Sorkin.

7From [20]: A self-adjoint operator W ∈ Ls (HA ⊗HB) is an entanglement witness if W is not a
positive operator but 〈ψ | 〈φ|W |ψ〉 |φ〉 ≥ 0 for all factorized vectors |ψ〉 |φ〉 ∈ HA ⊗HB . We say
that an entangled state ρ is detected by W if tr[ρW ] < 0.
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3.4 Summary

We began this chapter in Sect. 3.1 by giving a physical motivation for the Unruh-
DeWitt detector. We derived the probability that after the detector’s interaction
with the field it has transitioned from its ground state to its excited state, and
the associated transition rate. The main results of this chapter were presented in
Sects. 3.2 and 3.3.

In Sect. 3.2 we emphasized that the question of whether a quantum field is
entangled is ultimately an operational one that depends on the measuring pro-
cess and the motion of the observer making the measurement. We considered
two initially unexcited Unruh-DeWitt detectors moving along arbitrary timelike
trajectories in any curved spacetime admitting a Wightman function. We derived
the final state ρAB of the detectors after their interaction with the field has ceased
to all orders in the interaction strength λ, stating explicitly the leading order
contribution to ρAB in terms of the Wightman function. We then computed the
negativity, concurrence, entanglement of formation, and the correlation function
between local measurements of each detector, which quantify the entanglement and
correlations present in the state ρAB . We gave an interpretation of this entanglement
as entanglement that has been transferred from the initial state of the field to
these detectors, and interpreted these measures of entanglement as quantifying the
entanglement between the regions in which the detectors were operating.

In Sect. 3.3 we showed that a collection of Unruh-DeWitt detectors constitutes a
measurement model of an observable defined on the field Hilbert space Hφ . Through
the probability reproducibility condition we explicitly derived the POVM elements
associated with this observable to leading order and next to leading order in the
interaction strength λ. Using these POVM elements we rederived the transition
probability of a single detector. We also commented on possible applications of
these observables.
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Chapter 4
Unruh-DeWitt Detectors in Quotients
of Minkowski Space

We now apply the formalism developed in Chap. 3 to study the behaviour of Unruh-
DeWitt detectors in Minkowski space M as compared to two distinct cylindrical
spacetimes, which we will refer to as M0 and M−, constructed by topological
identifications of Minkowski space. These identifications are implemented by
quotienting Minkowski space with an appropriate group; spacetimes constructed
this way are referred to as quotient spacetimes, a general discussion of which is
given in Appendix B.1.

The purpose of this chapter is to investigate how the transition probability of a
single Unruh-DeWitt detector and the entanglement and correlations harvested by
two such detectors are affected by topological identifications. We begin in Sect. 4.1
by constructing the quotient spacetimes M0 and M− and derive the Wightman
function associated with the vacuum state of twisted and untwisted real scalar
fields in each via the method of images. In Sect. 4.2 we compute the transition
probability of a single inertial detector in all three spacetimes M, M0, and M−.
In Sect. 4.3 we compare the amount of entanglement harvested from the vacuum
state by two detectors in all three spacetimes, and demonstrate that the orientation of
detectors with respect to a topological identification affects how much entanglement
the detectors can harvest. The conclusion of this investigation is that, as seen by
detectors, the entanglement structure of the vacuum state is affected by the topology
of spacetime.

4.1 Quotients of Minkowski Space and Their Wightman
Functions

The quotient spacetimes M0 and M− are constructed by making topological
identifications of Minkowski space. These identifications will be expressed in
Minkowski coordinates t , x, y, and z, in which the Minkowski line element takes
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the familiar form

ds2 = dt2 − dx2 − dy2 − dz2. (4.1)

The first quotient spacetime we consider is the cylindrical spacetime

M0 :=M/Z, (4.2)

which is constructed by quotienting Minkowski space M with the group Z � {Jn
0 },

where the generator of the group J0 acts on M by identifying points

J0 : (t, x, y, z) ∼ (t, x, y, z + a) , (4.3)

where a is the circumference of spacetime.

The second quotient spacetime we consider is

M− :=M/�−, (4.4)

where the group �− � {Jn−} is generated by the discrete isometry

J− : (t, x, y, z) ∼ (t,−x,−y, z + a) , (4.5)

where again a is the circumference of the universe. M− is a cylindrical spacetime
in which rotations by π in the xy-plane have been identified.

Both identifications, J0 and J−, preserve space and time orientation and act freely
and properly ensuring both M0 and M− are space and time orientable Lorentzian
manifolds [4]. As neither J0 nor J− affect the Minkowski line element, both M0
and M− are locally flat spacetimes.

To study the behaviour of Unruh-DeWitt detectors in M0 and M− we need
to compute the final state of the detectors after interacting with a quantum field.
For a single detector initially unexcited, this amounts to computing the transition
probability PD given in Eq. (3.9). For two detectors, both initially unexcited, in
addition to the transition probability of each detector, one must compute the matrix
elements X and C appearing in the final state of the two detectors given in
Eqs. (3.24). Assuming the state of the field is prepared in its vacuum state,1 all of
these quantities are given by integrations over the Wightman function associated
with the vacuum state of the field.

1In this chapter, we will simply say ‘vacuum state’ without explicitly stating the vacuum state
agreed on by all inertial observers.
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Constructing Wightman functions associated with quantum fields on quotient
spacetimes is done using the method of images. Given that one knows the Wightman
function in the spacetime being identified (in the present case this is Minkowski
space M), the Wightman function in the quotient spacetime M/G is given by the
image sum

WM/G(x, x
′) =

∑
n

ηn WM(x, gnx′), (4.6)

where G is the group of identifications acting on M, g ∈ G is the generator
of the group, gnx′ denotes the action of the group element gn on the spacetime
point x′—the group action being realized by an identification associated with gn,
and WM(x, x′) and WM/G(x, x

′) are the Wightman functions in M and the
quotient spacetime M/G; the summation is carried out over all elements of G. The
parameter η is equal to −1 for twisted fields and 1 for untwisted fields. The method
of images applied to the study of Wightman functions (and other Green’s functions)
was first investigated by Banach and Dowker [1, 2]. An expanded discussion of
quotient spacetimes and the method of images is given in Appendix B.1.

4.1.1 The Wightman Function in Minkowski Space

To compute the Wightman function in M0 and M− via the method of images we
require the Wightman function in Minkowski space, which we will now derive. We
restrict our attention to massless fields in (3+1)-dimensional Minkowski space. The
equation of motion satisfied by a free scalar field, Eq. (2.4), simplifies in this case to

∂μ∂μ φ(x) = 0. (4.7)

A complete orthonormal set of mode functions with respect to the inner product in
Eq. (2.5) is given by the plane wave solutions

uk(x) = 1√
2 |k| (2π)3

e−i|k|t+ik·x, (4.8)

where x = (t, x). The field may be expanded in terms of these mode functions as

φ(x) =
∫

dk3

(2π)3/2

1√
2 |k|

(
e−i|k|t+ik·xak + ei|k|t−ik·xa†

k

)
. (4.9)

Once the theory is quantized, the operators ak and a
†
k satisfy the commutation

relations in Eq. (2.11).
Letting |0〉 denote the Minkowski vacuum state and using the expansion of the

field in Eq. (4.9), the Wightman function may be computed
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WM(x, x′) := 〈0|φ(x)φ(x′)|0〉

= 1

(2π)3

∫
dk3

2 |k| e
ik·(x−x′)−i|k|(t−t ′)

= 1

4π2 |x− x′|
∫ ∞

0
d|k| e−i|k|(t−t ′) sin

[|k| ∣∣x− x′
∣∣]

= 1

4π2 |x− x′| lim
ε→0+

∫ ∞
0

d|k| e−i|k|[(t−t ′)−iε sgn(t−t ′)] sin
[|k| ∣∣x− x′

∣∣)]

= − 1

4π2 lim
ε→0+

1[
t − t ′ − iε sgn(t − t ′)

]2 − x2

= 1

4πi
sgn(t − t ′) δ

[
σ(x, x′)

]− 1

4π2σ(x, x′)
, (4.10)

where

σ(x, x′) := (t − t ′)2 − (x − x′)2 − (y − y′)2 − (z− z′)2, (4.11)

and in arriving at the last equality we made use of Sokhotsky’s formula.2

4.1.2 The Wightman Function in M0 and M−

Having derived the Wightman function in Minkowski space, we can compute the
Wightman function in both M0 and M− using the method of images.

In M0, the Wightman function is

WM0(x, x
′) =

∞∑
n=−∞

ηn WM(x, J n
0 x′)

=
∞∑

n=−∞
ηn
[

1

4πi
sgn(t − t ′) δ

[
σ(x, J n

0 x
′)
]− 1

4π2σ(x, J n
0 x
′)

]
,

(4.12)

where

σ(x, J n
0 x
′) = (t − t ′)2 − (x − x′)2 − (y − y′)2 − (z− z′ − an)2. (4.13)

2limε→0
1

x±iε = ∓iπδ(x)+ PV 1
x

.



4.2 The Transition Probability in M, M0, and M− 45

Similarly, the Wightman function in M− is

WM−(x, x
′) =

∞∑
n=−∞

ηn WM(x, J n− x′)

=
∞∑

n=−∞
ηn
[

1

4πi
sgn(t − t ′) δ

[
σ(x, J n−x′)

]− 1

4π2σ(x, J n−x′)

]
,

(4.14)

where

σ(x, J n−x′) = (t − t ′)2 − (x − (−1)nx′)2 − (y − (−1)ny′)2 − (z− z′ − an)2.

(4.15)

4.2 The Transition Probability in M, M0, and M−

Having constructed the Wightman function in M, M0, and M−, we now turn our
attention to the behaviour of Unruh-DeWitt detectors in these spacetimes. Unruh-
DeWitt detectors in M0 and M− were first investigated by Langlois [4], who
computed the transition rate of inertial and uniformly accelerating detectors. In this
section we will compare the transition probability of a single detector in all three
spacetimes coupled to both twisted and untwisted fields.

Suppose a detector is initially prepared in its ground state and remains at rest
with respect to the coordinate system (t, x, y, z) throughout the interaction with the
scalar field with its trajectory given by

xD(τ) :=
{
t = τ, x = (dx, dy, dz)

}
. (4.16)

We choose the switching function χD(τ) controlling the duration of the interaction
with the scalar field to be a Gaussian

χD(τ) = e−τ 2/2σ 2
, (4.17)

with the interpretation that the detector is interacting with the field for an approx-
imate amount of proper time kσ , where k ∈ R is chosen so that the interaction
between the detector and field is negligible at the proper time τ = kσ .

With these choices, the transition probability as given in Eq. (3.9) in either M,
M0, or M− simplifies to

PD = λ2
∫

dτdτ ′ e−τ 2/2σ 2
e−τ ′2/2σ 2

e−i�(τ−τ ′)W
(
xD(τ), xD(τ

′)
)+O

(
λ4
)
,

(4.18)
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where W
(
xD(τ), xD(τ

′)
)

is the Wightman function in either M, M0, or M−
evaluated along the detector’s trajectory xD(τ).

We will now evaluate Eq. (4.18) for detectors in M, M0, or M−. The reader who
is uninterested in an explicit evaluation of Eq. (4.18) for the Wightman functions
given in Eqs. (4.10), (4.12), and (4.14) may skip to Table 4.1, where the transition
probabilities in all three spacetimes are summarized.

4.2.1 The Transition Probability in Minkowski Space

We first calculate the transition probability in Minkowski space, which we will
denote as PM. Substituting the Minkowski space Wightman function, Eq. (4.10),
evaluated along the detector’s trajectory given in Eq. (4.16) into Eq. (4.18) results in

PM = λ2
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ e−(τ+τ ′)2/4σ 2
e−(τ−τ ′)2/4σ 2

e−i�(τ−τ ′)

×
[

1

4πi
sgn
(
τ − τ ′

)
δ
(
(τ − τ ′)2

)
− 1

4π2(τ − τ ′)2

]
+O

(
λ4
)
. (4.19)

Let us change the integration variables to

y := τ − τ ′ and y′ := τ + τ ′, (4.20)

noting that the volume element transforms as dτdτ ′ = 1
2dydy

′. With these variables
the transition probability becomes

PM = λ2

2

∫ ∞
−∞

dy

∫ ∞
−∞

dy′ e−y′2/4σ 2
e−y2/4σ 2

e−i�y

×
[

1

4πi
sgn(y) δ

(
y2
)
− 1

4π2y2

]
+O

(
λ4
)

= λ2√πσ
∫ ∞
−∞

dy e−y2/4σ 2
e−i�y

[
1

4πi
sgn(y) δ

(
y2
)
− 1

4π2y2

]
+O

(
λ4
)

= λ2

4π

√
πσ [T1 + T2]+O

(
λ4
)
, (4.21)

where in the last equality

T1 := −i
∫ ∞
−∞

dy e−y2/4σ 2
e−i�y sgn(y) δ

(
y2
)
, (4.22a)

T2 := − 1

π

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y 1

y2
. (4.22b)
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Let us begin with the evaluation of T1. Observe that for a well-behaved3 test
function f (y), we have

PV
∫ ∞
−∞

dy f (y) sgn(y) δ
(
y2
)

= lim
r→0

PV
∫ ∞
−∞

dy f (y) sgn(y) δ
(
y2 − r2

)

= lim
r→0

PV
∫ ∞
−∞

dy f (y) sgn(y)
1

2 |r| [δ(y − r)+ δ(y + r)]

= lim
r→0

f (r)− f (−r)
2 |r|

=: f ′(0). (4.23)

Using this result, T1 simplifies to

T1 = −i d

dy
e−y2/4σ 2

e−i�y
∣∣∣∣
y=0
= −�. (4.24)

To evaluate T2, we make use of the identity

PV
∫ ∞
−∞

dy
f (y)

y2
=
∫ ∞

0
dy

f (y)+ f (−y)− 2f (0)

y2
, (4.25)

which is derived in Appendix B.2. Using Eq. (4.25), T2 may be evaluated

T2 = − 1

π

∫ ∞
0

dy
e−y2/4σ 2

e−i�y + e−y2/4σ 2
ei�y − 2

y2

= − 2

π

∫ ∞
0

dy
e−y2/4σ 2

cos(�y)− 1

y2

= − 2

π

[
−
√
π

2σ

(
e−σ 2�2 +√πσ� erf(σ�)

)]

= 1√
πσ

e−σ 2�2 +� erf(σ�) . (4.26)

Having calculated both T1 and T2, using Eq. (4.21) the transition probability is
given by

PM = λ2

4π

[
e−σ 2�2 −√πσ� erfc(σ�)

]
+O

(
λ4
)
. (4.27)

3A smooth function that tends to zero as y →±∞.



48 4 Unruh-DeWitt Detectors in Quotients of Minkowski Space

4.2.2 The Transition Probability in M0

We now compute the transition probability for the same detector considered above
in the cylindrical spacetime M0, which we will label by PM0 . Again, beginning
with the expression for the transition probability given in Eq. (4.18) and making use
of the Wightman function in Eq. (4.12) evaluated along the trajectory in Eq. (4.16),
the transition probability of a detector in M0 is given by

PM0 = PM + λ2
∑
n �=0

ηn
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ e−(τ+τ ′)2/4σ 2
e−(τ−τ ′)2/4σ 2

e−i�(τ−τ ′)

×
[

1

4πi
sgn
(
τ − τ ′

)
δ
(
(τ − τ ′)2 − a2n2

)
− 1

4π2
[
(τ − τ ′)2 − a2n2

]
]

+O
(
λ4
)

= PM + λ2√πσ
∑
n �=0

ηn
∫ ∞
−∞

dy e−y2/4σ 2
e−i�y

×
[

1

4πi
sgn(y) δ

(
y2 − a2n2

)
− 1

4π2
[
y2 − a2n2

]
]
+O

(
λ4
)
,

(4.28)

where the last equality is obtained by changing the integration variables to y :=
τ − τ ′ and y′ := τ + τ ′ and carrying out the integration over y′. Defining

T1(n) := 1

4πi

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y sgn(y) δ

(
y2 − a2n2

)
, (4.29a)

T2(n) := − 1

4π2

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y 1

y2 − a2n2
, (4.29b)

allows the transition probability to be written as

AM0 = AM + λ22
√
πσ

∞∑
n=1

ηn [T1(n)+ T2(n)]+O
(
λ4
)
. (4.30)

The integration in T1(n) may be carried out, yielding

T1(n) = 1

4πi

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y sgn(y) δ

(
y2 − a2n2

)

= 1

4πi

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y sgn(y)

1

2 |an| [δ(y + an)+ δ(y − an)]
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= 1

4π
e−a2n2/4σ 2 1

|an|
sgn(an)e−i�an + sgn(−an)ei�an

2i

= 1

4π
e−a2n2/4σ 2 sgn(an)

|an| sin(�an) . (4.31)

The integration in T2(n) may also be performed, yielding

T2(n) = − 1

4π2

∫ ∞
−∞

dy e−y2/4σ 2
e−i�y 1

y2 − a2n2

= − 1

4π2

∫ ∞
−∞

dydȳ δ(ȳ − y) e−ȳ2/4σ 2
e−i�ȳ 1

y2 − a2n2

= − 1

4π2

∫ ∞
−∞

dydȳ

(
1

2π

∫ ∞
−∞

dz eiz(ȳ−y)
)
e−ȳ2/4σ 2

e−i�ȳ 1

y2 − a2n2

= − 1

8π3

∫ ∞
−∞

dz

(∫ ∞
−∞

dȳ e−i(�−z)ȳe−ȳ2/4σ 2
)

×
(∫ ∞
−∞

dy e−izy 1

y2 − a2n2

)
. (4.32)

The integrals in the round brackets above are recognized as Fourier transforms of
e−ȳ2/4σ 2

and 1/(t2 − a2n2), which may be evaluated using [3] to give

T2(n) = − 1

8π3

∫ ∞
−∞

dz
(

2
√
πσe−(�−z)2σ 2

)(
−π sgn(z)

sin(anz)

an

)

= σ

4π3/2an

∫ ∞
−∞

dz sgn(z) sin(anz)e−(�−z)2σ 2

= σ

4πan
e−a2n2/4σ 2

Im
[
eian� erf

(
i
an

2σ
+ σ�

)]
, (4.33)

where the integration over z was performed with Mathematica and erf(x) :=
2√
π

∫ x
0 dx′ e−x2

is the error function.

Having evaluated both T1(n) and T2(n), the transition probability in M0
simplifies to

PM0 = PM

+ λ2σ

4
√
π

∞∑
n=1

ηn
e−a2n2/4σ 2

an

(
Im
[
eian� erf

(
i
an

2σ
+ σ�

)]
− sin (�an)

)

+O
(
λ4
)
. (4.34)
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4.2.3 The Transition Probability in M−

We now compute the transition probability of the same detector considered above
in the cylindrical spacetime M−, which we will denote as PM− . Again, we begin
with the expression for the transition probability given in Eq. (4.18), and substitute
the Wightman function given in Eq. (4.14) evaluated along the detector’s trajectory
specified in Eq. (4.16), which results in

PM− = AM + λ2
∑
n �=0

ηn
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ e−(τ+τ ′)2/4σ 2
e−(τ−τ ′)2/4σ 2

e−i�(τ−τ ′)

×
[

1

4πi
sgn
(
τ − τ ′

)
δ
(
(τ − τ ′)2 − (d2

x + d2
y )(1− (−1)n)− a2n2

)

− 1

4π2 [(τ − τ ′)2 − (d2
x + d2

y )(1− (−1)n)− a2n2]
]
+O

(
λ4
)

= AM + λ22
√
πσ

∞∑
n=1

ηn
∫ ∞
−∞

dy e−y2/4σ 2
e−i�y

×
[

1

4πi
sgn(y) δ

(
y2 −D(n)2

)
− 1

4π2[y2 −D(n)2]
]
+O

(
λ4
)
,

(4.35)

where

D(n)2 := [1− (−1)n
] (

d2
x + d2

y

)
+ a2n2, (4.36)

and the last equality is obtained by noting the sum is invariant under n→ −n, and
changing the integration variables to y := τ − τ ′ and y′ := τ + τ ′, and carrying out
the integration over y′.

Upon comparison of Eq. (4.35) to Eq. (4.28), we see that the transition probability
in M− is identical to M0 under the replacement of an→ D(n). Thus, the transition
probability in M− is given by

PM− = PM + λ2σ

2
√
π

∞∑
n=1

ηn
e−D(n)2/4σ 2

D(n)

(
Im

[
eiD(n)� erf

(
iD(n)

2σ
+ σ�

)]

− sin(D(n)�)

)
+O

(
λ4
)
. (4.37)
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4.2.4 Comparison of the Transition Probability in M, M0,
and M−

The transition probabilities of an Unruh-DeWitt detector in M, M0, and M−, as
calculated above, are summarized in Table 4.1. We compare these probabilities
by plotting them as a function of the energy gap of the detector σ� in Figs. 4.1,
4.2, and 4.3. Note that a negative energy gap σ� < 0 corresponds to the de-
excitation probability of a detector, i.e. the probability that if the detector began in
the excited state |1〉D it has transitioned to its ground state |0〉D after the interaction
with the field has ceased. For plotting purposes the image sums appearing in the
transition probabilities for detectors in M0 and M−, Eqs. (4.34) and (4.37), have
been truncated after 100 terms, which results in an error on the order of 10−5.

From Figs. 4.1, 4.2, and 4.3 we make the following observations:

1. When the circumference a/σ of either cylindrical spacetime, M0 or M−,
becomes large, the transition probability of a detector in both spacetimes
approaches the transition probability of an equivalent detector in Minkowski
space. For smaller circumferences, the transition probability for negative energy
gaps oscillates around the transition probability of an equivalent detector in
Minkowski space as a function of the detectors energy gap σ�, with the
frequency increasing as the circumference of either M0 or M− increases.

2. From Fig. 4.1, we see that the difference between a detector coupled to (a) an
untwisted field versus (b) a twisted field in M0 is that the oscillations of the
transition probability as a function of the detector’s energy gap for negative

Table 4.1 The transition probability in Minkowski space M and the two cylindrical spacetimes
M0 and M− constructed by the identifications (t, x, y, z) ∼ (t, x, y, z+ a) and (t, x, y, z) ∼
(t,−x,−y, z+ a) of Minkowski space, respectively

Spacetime Transition probability to leading order in λ

M
PM = λ2

4π

[
e−σ 2�2 −√πσ� erfc(σ�)

]

M0
PM0 = PM + λ2σ

2
√
π

∞∑
n=1

ηn
e−a2n2/4σ 2

an

×
(

Im
[
eian� erf

(
i
an

2σ
+ σ�

)]
− sin (�an)

)

M−
PM− = PM + λ2σ

2
√
π

∞∑
n=1

ηn
e−D(n)2/4σ 2

D(n)

×
(

Im

[
eiD(n)� erf

(
i
D(n)

2σ
+ σ�

)]
− sin (�D(n))

)

Note that D(n)2 := [1− (−1)n]
(
d2
x + d2

y

)
+ a2n2
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Fig. 4.1 The transition probability of a detector coupled to an (a) untwisted (η = 1) and (b)
twisted (η = −1) massless scalar field in Minkowski space M (solid red) is compared to the
transition probability of the same detector in the cylindrical spacetime M0 (broken lines) by
plotting the transition probability as a function of the energy gap σ� of the detector. Different
circumferences a/σ of the cylindrical spacetime are shown

energy gap are exactly out of phase. Further, the transition probability of a
detector with a positive energy gap coupled to an untwisted field is significantly
larger than the same detector coupled to a twisted field.

3. From Figs. 4.2 and 4.3, it is seen that the distance
√
d2
x + d2

y/σ the detector is

away from the origin in the xy-plane in M− affects the transition probability.
For a detector located at the origin of the xy-plane, the transition probability of a
detector in M− is identical to a detector in M0 with the same circumference. As
the detector moves away from the origin in the xy-plane, additional oscillations
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Fig. 4.2 The transition probability of a detector coupled to an (a) untwisted (η = 1) and (b)
twisted (η = −1) massless scalar field in Minkowski space M (solid red) is compared to
the transition probability of the same detector in the cylindrical spacetime M− (broken lines)
by plotting the transition probability as a function of the energy gap σ� of the detector. The

detector is located a distance
√
d2
x + d2

y /σ = 0.5 away from the origin in the xy-plane. Different

circumferences a/σ of the cylindrical spacetime are shown

appear in the transition probability (Fig. 4.2) and then disappear when the
detector is far from the origin in the xy-plane (Fig. 4.3).

4. From Figs. 4.2 and 4.3, the difference in the transition probability of a detector
coupled to an untwisted versus twisted field in M− only appears when the
detector is close to the origin in the xy-plane (Fig. 4.2). As the detector moves
away from the origin in the xy-plane (Fig. 4.3), the transition probability is
insensitive to whether the detector is coupled to a twisted or untwisted field.
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Fig. 4.3 The transition probability of a detector coupled to an (a) untwisted (η = 1) and (b)
twisted (η = −1) massless scalar field in Minkowski space M (solid red) is compared to the
transition probability of the same detector in the cylindrical spacetime M− (broken lines) by
plotting the transition probability as a function of the energy gap σ� of the detector. The detector is

located a distance
√
d2
x + d2

y /σ = 5 away from the origin in the xy-plane. Different circumferences

a/σ of the cylindrical spacetime are shown

4.3 Entanglement and Correlation Harvesting in Quotients
of Minkowski Space

In this section we apply the entanglement harvesting protocol developed in Chap. 3
to Minkowski space M and the two cylindrical spacetimes M0 and M− introduced
in Sect. 4.1. We begin by computing the matrix elements X and C, defined in
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Eqs. (3.26) and (3.25), appearing in the final state ρAB ∈ S (HA ⊗HB) of two
Unruh-DeWitt detectors in all three spacetimes M, M0, and M−. We then use
these results to compute the concurrence associated with ρAB , quantifying how
entangled the detectors have become as a result of their interaction with the field,
and the correlation between local measurements of the Pauli z operator on the final
state of each detector.

In all three spacetimes we will consider the trajectories of detector A and B to be

xA(τ) := {t = τA, xA = (xA, yA, zA)} , (4.38a)

xB(τ) := {t = τB, xB = (xB, yB, zB)} , (4.38b)

where τA and τB are the proper time of each detector. The detectors are at rest with
respect to one another and with respect to the chosen coordinate frame. This allows
us to parametrize both their trajectories with the coordinate time t .

We will again suppose that the switching function of each detector is Gaussian

χA(t) = χB(t) = e−t2/2σ 2
, (4.39)

with the interpretation that each detector is interacting with the field for an
approximate amount of proper time kσ . We will also suppose that the energy gap of
each detector is the same, �A = �B = �.

4.3.1 Computation of the Matrix Element X

With the above choices for the detectors’ switching functions and trajectories, the
matrix element X defined in Eq. (3.26) simplifies to

X = −λ2
∫ ∞
−∞

dt

∫ t

−∞
dt ′ e−(t ′+t)2/4σ 2

e−(t ′−t)2/4σ 2
e−i�(t+t ′)

×
[
W
(
xA(t

′), xB(t)
)+W

(
xB(t

′), xA(t)
) ]

. (4.40)

Using Eq. (4.40) we now compute X in Minkowski space M and the two cylindrical
spacetimes M0 and M−. The reader uninterested in the explicit evaluation of X
may skip to Table 4.2 where the values of X are summarized in all three spacetimes.

Evaluation of X in Minkowski Space M

We begin by evaluating X in Minkowski space M. Using the Minkowski space
Wightman function given in Eq. (4.10) and the detectors’ trajectories in Eq. (4.38),
the factor in the square brackets in Eq. (4.40) evaluates to
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2

(
1

4πi
sgn(t ′ − t)δ

[
(t ′ − t)2 − L2

]
− 1

4π2
[
(t ′ − t)2 − L2

]
)
, (4.41)

where L2 := (xA − xB)
2 + (yA − yB)

2 + (zA − zB)
2 is the square of the spatial

distance between the two detectors.
Upon substituting Eq. (4.41) into Eq. (4.40) and changing the integration vari-

ables to u′ = t ′ + t and u = t ′ − t , the quantity X simplifies to

XM = −λ2
∫ ∞
−∞

du′ e−u′2/4σ 2
e−iΩu′

∫ 0

−∞
du e−u2/4σ 2

×
(

1

4πi
sgn(u)δ

[
u2 − L2

]
− 1

4π2
[
u2 − L2

]
)

= −λ2
∫ ∞
−∞

du′ e−u′2/4σ 2
e−iΩu′

∫ ∞
0

du e−u2/4σ 2

×
(

1

4πi
sgn(−u)δ

[
u2 − L2

]
− 1

4π2
[
u2 − L2

]
)

= 2
√
πλ2σe−σ 2Ω2

∫ ∞
0

du e−u2/4σ 2

(
1

4πi
sgn(u)δ

[
u2 − L2

]
+ 1

4π2
[
u2 − L2

]
)

= 2
√
πλ2σe−σ 2Ω2

∫ ∞
0

du e−u2/4σ 2

(
1

4πi

1

2L
δ[u− L]+ 1

4π2
[
u2 − L2

]
)

= 2
√
πλ2σe−σ 2Ω2

(
1

4πi

e−L2/4σ 2

2L
+ 1

4π2

[
i
π

2L
e−L2/4σ 2

erf

(
i
L

2σ

)])

= i
λ2

4
√
π

σ

L
e−σ 2Ω2−L2/4σ 2

[
erf

(
i
L

2σ

)
− 1

]
, (4.42)

where the integration was performed with Mathematica.

Evaluation of X in the Cylindrical Spacetime M0

Again, let us begin by evaluating the terms inside the square brackets in Eq. (4.40)
using the Wightman function in M0 given in Eq. (4.12)

2
∞∑

n=−∞
ηn

(
1

4πi
sgn(t ′ − t)δ

[
(t ′ − t)2 − LM0(n)

2
]

− 1

4π2
[
(t ′ − t)2 − LM0(n)

2
]
)
, (4.43)

where

LM0(n)
2 := L2 + a2n2 + 2anL sin θ, (4.44)
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with θ being the angle between a line connecting the two detectors and the z-axis.
Upon comparison with Eq. (4.41), it is clear that each term in the sum in

Eq. (4.43) is identical to Eq. (4.41) with the replacement L→ LM0(n). Therefore,
XM0 is given by Eq. (4.48) with the replacement L → LM0(n) and a summation
over n

XM0 = XM + i
λ2

4
√
π

∑
n �=0

ηn
σ

LM0(n)
e−σ

2�2−LM0 (n)
2/4σ 2

D

×
[

erf

(
i
LM0(n)

2

2σ

)
− 1

]
. (4.45)

Evaluation of X in the Cylindrical Spacetime M−

Evaluating the terms inside the square brackets in Eq. (4.40), using the Wightman
function in M− given in Eq. (4.14), yields

2
∞∑

n=−∞
ηn

(
1

4πi
sgn(t ′ − t)δ

[
(t ′ − t)2 − LM−(n)

2
]

− 1

4π2
[
(t ′ − t)2 − LM−(n)

2
]
)
, (4.46)

where

LM−(n)
2 := LM0(n)

2 + 2
[
1− (−1)n

]
dA · dB, (4.47)

and dA := (xA, yA) and dB := (xB, yB) are vectors lying in the xy-plane.
Again, upon comparison with Eq. (4.41) it is clear that each term in the sum in

Eq. (4.46) is identical to Eq. (4.41) with the replacement L→ LM−(n). Therefore,
XM− is given by Eq. (4.48) with the replacement L→ LM−(n) and a summation
over n

XM− = XM + i
λ2

4
√
π

∑
n �=0

ηn
σ

LM−(n)
e−σ 2�2−LM− (n)2/4σ 2

×
[

erf

(
i
LM−(n)

2σ

)
− 1

]
. (4.48)

Summary

The above evaluations of the matrix element X in all three spacetimes M, M0, and
M− are summarized in Table 4.2.
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Table 4.2 The matrix element X in Minkowski space M and the two cylindrical spacetimes
M0 and M− constructed from the identifications (t, x, y, z) ∼ (t, x, y, z+ a) and (t, x, y, z) ∼
(t,−x,−y, z+ a) of Minkowski space, respectively

Spacetime The matrix element X to leading order in λ

M
XM = i

λ2

4
√
π

σ

L
e−σ 2�2−L2/4σ 2

[
erf

(
i
L

2σ

)
− 1

]

M0 XM0 = XM

+ i
λ2

4
√
π

∑
n �=0

ηn
σ

LM0 (n)
e−σ 2�2−LM0 (n)

2/4σ 2
D

[
erf

(
i
LM0 (n)

2

2σ

)
− 1

]

where LM0 (n)
2 := L2 + a2n2 + 2anL sin θ

M− XM− = XM

+ i
λ2

4
√
π

∑
n �=0

ηn
σ

LM− (n)
e−σ 2�2−LM− (n)2/4σ 2

[
erf

(
i
LM− (n)

2σ

)
− 1

]

where LM− (n)
2 := LM0 (n)

2 + 2
[
1− (−1)n

]
dA · dB

The trajectory of the two detectors is xA(t) = (t, xA, yA, zA) and xB(t) = (t, xB, yB, zB), and
dA := (xA, yA), dB := (xB, yB), L is the spatial distance between the two detectors, and sin θ :=
|zA − zB | /L

4.3.2 Computation of the Matrix Element C

With the above choices for the detectors’ switching functions and trajectories, the
matrix element C defined in Eq. (3.25) simplifies to

C = λ2
∫

dtdt ′ e−(t ′+t)2/4σ 2
e−(t ′−t)2/4σ 2

e−i�(t ′−t)W
(
xA(t

′), xB(t)
)
. (4.49)

Using Eq. (4.49), we now compute C in Minkowski space M and both cylindrical
spacetimes M0 and M−. The reader uninterested in the explicit evaluation of
Eq. (4.49) may skip to Table 4.3 where C in all three spacetimes is summarized.

Evaluation of C in Minkowski Space M

The Wightman function in Minkowski space evaluated along the detectors’ trajec-
tories appearing in Eq. (4.49) yields

WM
(
xA(t

′), xB(t)
) = 1

4πi
sgn
(
t ′ − t

)
δ
( (

t ′ − t
)2 − L2

)

− 1

4π2
(
(t ′ − t)2 − L2

) . (4.50)
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Upon substituting Eq. (4.50) into Eq. (4.49) and changing the integration vari-
ables to u = t ′ − t and u′ = t ′ + t , the matrix element C simplifies to

CM = λ2 1

2

∫
du′du e−u′2/4σ e−u2/4σ e−i�u

×
⎡
⎣ 1

4πi
sgn (u) δ

(
u2 − L2

)
− 1

4π2
(
u2 − L2

)
⎤
⎦

= λ2√πσ
∫

du e
− u2

4σ2 e−i�u

×
⎡
⎣ 1

4πi

sgn (u)

2 |L|
[
δ
(
u+ L

)
+
(
u− L

)]
− 1

4π2
(
u2 − L2

)
⎤
⎦

= −λ2 σ

4
√
π

⎡
⎣e
− L2

4σ2

L
sin (�L)+ 1

π

∫
du

e
− u2

4σ2 e−i�u

u2 − L2

⎤
⎦ . (4.51)

The remaining integral in Eq. (4.51) may be evaluated using the convolution
theorem

∫
du

e
− u′2

4σ2 e−i�u′

u2 − L2 =
∫

dudu′ δ(u′ − u)
e−u2/4σ 2

e−i�u

u2 − L2

=
∫

dudu′
(

1

2π

∫
dy eiy(u

′−u)
)
e−u′2/4σ 2

e−i�u′

u2 − L2

= 1

2π

∫
dy

(∫
du′ e−u′2/4σ 2

e−iu′(�−y)
)(∫

du
e−iyu

u2 − L2

)

= 1

2π

∫
dy
(

2
√
πσe−σ 2(�−y)2

)(
−π sgn(y)

L
sinLy

)

= −π

L
e−L2/4σ 2

Im

[
eiL� erf

(
i
L

2σ
+ σ�

)]
. (4.52)

After substituting Eq. (4.52) into Eq. (4.51), we find C to be

CM = λ2

4
√
π

σ

L
e−L2/4σ 2

(
Im

[
eiL� erf

(
i
L

2σ
+ σ�

)]
− sin�L

)
. (4.53)
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Evaluation of C in the Cylindrical Spacetime M0

The Wightman function in the cylindrical spacetime M0 evaluated along the
detectors’ trajectories appearing in Eq. (4.49) is

WM0

(
xA(t

′), xB(t)
) =

∞∑
n=−∞

ηn

(
1

4πi
sgn(t ′ − t)δ

[
(t ′ − t)2 − LM0(n)

2
]

− 1

4π2
[
(t ′ − t)2 − LM0(n)

2
]
)
. (4.54)

Upon comparison with Eq. (4.50), it is clear that each term in the sum in
Eq. (4.54) is identical to Eq. (4.50) with the replacement L→ LM0(n). Therefore,
CM0 is given by Eq. (4.53) with the replacement L → LM0(n) and a summation
over n

CM0 = CM + λ2

4
√
π

∑
n �=0

ηn
σ

LM0(n)
e−LM0 (n)

2/4σ 2

×
(

Im

[
eiLM0 (n)� erf

(
i
LM0(n)

2σ
+ σ�

)]
− sin�LM0(n)

)
. (4.55)

Evaluation of C in the Cylindrical Spacetime M−

The Wightman function in the cylindrical spacetime M− evaluated along the
detectors’ trajectories appearing in Eq. (4.49) is

WM−
(
xA(t

′), xB(t)
) =

∞∑
n=−∞

ηn

(
1

4πi
sgn(t ′ − t)δ

[
(t ′ − t)2 − LM−(n)

2
]

− 1

4π2
[
(t ′ − t)2 − LM−(n)

2
]
)
. (4.56)

Again, upon comparison with Eq. (4.50), it is clear that each term in the sum in
Eq. (4.56) is identical to Eq. (4.50) with the replacement L→ LM−(n). Therefore,
CM− is given by Eq. (4.53) with the replacement L→ LM−(n) and a summation
over n

CM− = CM + λ2

4
√
π

∑
n �=0

ηn
σ

LM−(n)
e−LM− (n)2/4σ 2

×
(

Im

[
eiLM− (n)� erf

(
i
LM−(n)

2σ
+ σ�

)]
− sin�LM−(n)

)
.

(4.57)
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Summary

The above evaluations of the matrix element C in all three spacetimes M, M0, and
M− are summarized in Table 4.3.

4.3.3 Harvesting Entanglement and Correlations in M, M0,
and M−

Having evaluated the matrix elements X and C, and the transition probability PD

in Sect. 4.2, for detectors in M, M0, and M−, we now compare how entangled
the final state ρAB of two static detectors is in these spacetimes. We quantify this
entanglement with the concurrence C(ρAB), which is plotted in Figs. 4.4, 4.5, 4.6,
4.7, 4.8, 4.9, and 4.10. In addition, we examine the correlations between local
measurements of the Pauli z operator σz by evaluating the correlation function
corr(ρAB) in all three spacetimes.

We first note from Tables 4.2 and 4.3 that the matrix elements X and C both
diverge when the separation of the detectors goes to zero, consequently so does the
entanglement and correlations between the detectors. This divergence is due to the

Table 4.3 The matrix element C in Minkowski space M and the two cylindrical universes M0
and M− constructed from the identifications (t, x, y, z) ∼ (t, x, y, z+ a) and (t, x, y, z) ∼
(t,−x,−y, z+ a) of Minkowski space, respectively

Spacetime The matrix element C to leading order in λ

M
CM = λ2

4
√
π

σ

L
e−L2/4σ 2

(
Im

[
eiL� erf

(
i
L

2σ
+ σ�

)]
− sin�L

)

M0
CM0 = CM + λ2

4
√
π

∑
n �=0

ηn
σ

LM0 (n)
e−LM0 (n)

2/4σ 2

×
(

Im

[
eiLM0 (n)� erf

(
i
LM0 (n)

2σ
+ σ�

)]
− sin�LM0 (n)

)

where LM0 (n)
2 := L2 + a2n2 + 2anL sin θ

M−
CM− = CM + λ2

4
√
π

∑
n �=0

ηn
σ

LM− (n)
e−LM− (n)2/4σ 2

×
(

Im

[
eiLM− (n)� erf

(
i
LM− (n)

2σ
+ σ�

)]
− sin�LM− (n)

)

where LM− (n)
2 := LM0 (n)

2 + 2
[
1− (−1)n

]
dA · dB

The trajectory of the two detectors is xA(t) = (t, xA, yA, zA) and xB(t) = (t, xB, yB, zB), and
dA := (xA, yA), dB := (xB, yB), L is the spatial distance between the two detectors, and sin θ :=
|zA − zB | /L
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fact that the detector couples to the field at a point, and could have been regulated
had the detector been coupled to a smeared field modelling the spatial extent of the
detector [5].

In Figs. 4.5 and 4.8 the contours indicate the value of the concurrence in
Minkowski space, and in Figs. 4.6 and 4.9 the contours indicate the value of the
correlation function in Minkowski space. In Figs. 4.5, 4.6, 4.8, and 4.9, the thick
black line denotes the boundary to the left of which the entanglement in the final
state of the detectors is identically zero. For plotting purposes, the image sums
appearing in the transition probabilities PA and PB and the matrix elements X and C

have been truncated after 100 terms, which results in an error on the order of 10−5.

Description of Fig. 4.4

Figure 4.4 depicts both the concurrence C(ρAB)M and correlation function
corr(ρAB)M for two detectors in Minkowski space M as a function of the detector
separation L/σ and energy gap σ� in units of the interaction length σ .

From Fig. 4.4 we see that the detectors become most entangled and strongly
correlated when they have a small positive energy gap. Furthermore, as the detector
separation increases, both the entanglement and correlations decrease. This should
have been expected from the fact that the Wightman function WM(x, x′) decreases
as the distance between the spacetime points x and x′ increases.

We also observe that the entanglement in the final state of the detectors vanishes
for the region to the left of the thick black line, while the correlations decay to zero
smoothly.

Description of Fig. 4.5

In Fig. 4.5 the concurrence of the final state of two detectors in the cylindrical
spacetime M0 is compared to the same quantity in Minkowski space M by plotting
their difference C(ρAB)M0 − C(ρAB)M. The circumference of the spacetime M0
is a/σ = 4 and the detectors are aligned with the identified direction.

From Fig. 4.5 we observe that for detectors coupled to untwisted or twisted fields,
the region in which ρAB is not entangled coincides closely with the region in which
the detectors are not entangled in Minkowski space, i.e. the region to the left of the
thick black line.

We also observe that for energy gaps where the detectors are most entangled,
detectors coupled to an untwisted (a twisted) field are less (more) entangled than
identical detectors in Minkowski space. This difference between detectors coupled
to twisted and untwisted fields is in large part due to the difference in the transition
probability PD of a single detector. Since the concurrence is given by C(ρAB) =
2 max

[
0, |X| − √PAPB

]+O
(
λ4
)
, for fixed |X|, we see that the smaller the transi-

tion probabilities PA and PB , the greater the concurrence quantifying the entangle-
ment between the detectors. From Fig. 4.1, we see that the transition probability of
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Fig. 4.4 For two
Unruh-DeWitt detectors in
Minkowski space M, (a) the
concurrence C(ρAB)M and
(b) correlation function
corr(ρAB)M are plotted as a
function of their separation
L/σ and energy gap σ�. In
both (a) and (b), to the left of
the thick black line the final
state of the two detectors ρAB
is not entangled; this is also
true for Figs. 4.5, 4.6, 4.8,
and 4.9

a detector in M0 coupled to a twisted field is much less than a detector coupled to
an untwisted field for detectors with a small positive or negative energy gap.

However, for detectors with a large positive energy gap, we see that the
entanglement between the detectors is greatest for detectors coupled to an untwisted
field. This is the regime in which the transition probability of a detector coupled to
either an untwisted or twisted field is comparable.
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Fig. 4.5 The difference
between the concurrence of
the final state of two detectors
in the cylindrical spacetime
M0 and Minkowski space
M, C(ρAB)M0 − C(ρAB)M,
is plotted as a function of
their separation L/σ and
energy gap σ� for detectors
coupled to (a) untwisted
fields (η = 1) and (b) twisted
fields (η = −1). In both (a)
and (b) the circumference of
the spacetime is a/σ = 4 and
the detectors are aligned with
the identified direction, θ = 0

Description of Fig. 4.6

In Fig. 4.6 we examine the correlation between the outcomes of local measurements
of the Pauli z operator on each detector, given the detectors are in their final state
ρAB . This is done for detectors in the cylindrical spacetime M0 and compared
to detectors in Minkowski space M by plotting the difference in the correlation
functions corr(ρAB)M0 − corr(ρAB)M. The circumference of the spacetime M0 is
a/σ = 4 and the detectors are aligned with the identified direction.

For detectors with a positive energy gap, the correlations in the final state of
the two detectors in M0 as compared to equivalent detectors in M behave as the
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Fig. 4.6 The difference
between the correlation
function associated with the
final state of two detectors in
the cylindrical spacetime M0
and Minkowski space M,
corr(ρAB)M0 − corr(ρAB)M,
is plotted as a function of
their separation L/σ and
energy gap σ� for detectors
coupled to (a) untwisted
fields (η = 1) and (b) twisted
fields (η = −1). In both (a)
and (b) the circumference of
the spacetime is a/σ = 4 and
the detectors are aligned with
the identified direction, θ = 0

entanglement depicted in Fig. 4.5. However, for negative energy gaps immediately
to the right of the thick black line, in the region where the entanglement between
the two detectors vanishes, we see that the correlations are greater (smaller)
for detectors coupled to an untwisted (twisted) field as compared to correlations
between detectors in Minkowski space. The converse is true when the energy gap
becomes more negative (σ� ≈ −3).
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Fig. 4.7 For two detectors in the cylindrical spacetime M0, the concurrence associated with the
final state of the two detectors C(ρAB)M0 is plotted as a function of the detectors orientation
with respect to the identified direction. When θ = 0 (θ = π/2) the detectors are aligned with
(orthogonal to) the identified direction. The energy gap of the detectors is σ� = 0.75. This is done
for detectors coupled to (a) untwisted fields (η = 1) and (b) twisted fields (η = −1)

Description of Fig. 4.7

In Fig. 4.7 the concurrence C(ρAB)M0 of the final state of two detectors in the
cylindrical spacetime M0 is plotted as a function of the detectors orientation with
respect to the identified direction (i.e. the z axis); θ = 0 (θ = π/2) the detectors are
aligned with (orthogonal to) the identified direction. The energy gap of the detector
is σ� = 0.75.
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We first observe that for detectors coupled to either twisted or untwisted fields
with the chosen energy gap, the amount of entanglement that results in the final
state of the two detectors depends on their orientation with respect to the identified
direction. For large detector separation, the total amount of entanglement in the
final state is less than for small detector separation; however, the dependence on
the detector orientation is greater. For untwisted (twisted) fields and detectors with
the energy gap plotted in Fig. 4.7, the entanglement in the final state increases
(decreases) as the angle with respect to the identified direction increases.

Description of Fig. 4.8

In Fig. 4.8 the concurrence of the final state of two detectors in the cylindrical
spacetime M− is compared to the same quantity in Minkowski space M by plotting
their difference C(ρAB)M− − C(ρAB)M. The circumference of the spacetime M−
is a/σ = 4, and dA = dB , |dA| /σ = 0.25, and the detectors are aligned with the
identified direction.

From Fig. 4.8, we observe that for detectors coupled to either untwisted or twisted
fields, the region in which ρAB is not entangled is approximately the same region
in which detectors are not entangled in Minkowski space, i.e. the region to the left
of the thick black line. A second observation is that the concurrence associated with
the final state of the two detectors in M− is greater (less) than the same quantity
in Minkowski space M for twisted (untwisted) fields. This is similar to detectors in
M0, as shown in Fig. 4.5.

Description of Fig. 4.9

In Fig. 4.9 we examine the correlation between the outcomes of local measurements
of the Pauli z operator on each detector, given the detectors are in their final state
ρAB . This is done for detectors in the cylindrical spacetime M− and compared
to detectors in Minkowski space M by plotting the difference in the correlation
functions corr(ρAB)M− − corr(ρAB)M. The circumference of the spacetime M−
is a/σ = 4, and dA = dB , |dA| /σ = 0.25, and the detectors are aligned with the
identified direction.

Upon comparison of Fig. 4.9 with Fig. 4.6, we observe that the correlation
function associated with detectors coupled to either untwisted or twisted fields in
the cylindrical spacetime M− behaves similar to the correlation function associated
with detectors in M0; see the discussion of Fig. 4.6.



68 4 Unruh-DeWitt Detectors in Quotients of Minkowski Space

Fig. 4.8 The difference
between the concurrence of
the final state of two detectors
in the cylindrical spacetime
M− and Minkowski space
M, C(ρAB)M− − C(ρAB)M,
is plotted as a function of
their separation L/σ and
energy gap σ�, for detectors
coupled to (a) untwisted
fields (η = 1) and (b) twisted
fields (η = −1). In both (a)
and (b) the circumference of
the spacetime is a/σ = 4,
dA = dB , |dA| /σ = 0.25,
and θ = 0

Description of Fig. 4.10

In Fig. 4.10 the concurrence C(ρAB)M− of the final state of two detectors in the
cylindrical spacetime M− is plotted as a function of the detectors orientation with
respect to the identified direction (the z direction); θ = 0 (θ = π/2) the detectors are
aligned with (orthogonal to) the identified direction. The energy gap of the detector
is σ� = 0.75, and dA = dB and |dA| /σ = 0.25.

We observe that for detectors coupled to either twisted or untwisted fields with
the chosen energy gap, the amount of entanglement that results in the final state
depends on the orientation of the detectors with respect to the identified direction.
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Fig. 4.9 The difference
between the correlation
function associated with the
final state of two detectors in
the cylindrical spacetime M−
and Minkowski space M,
corr(ρAB)M− −corr(ρAB)M,
is plotted as a function of
their separation L/σ and
energy gap σ�, for detectors
coupled to (a) untwisted
fields (η = 1) and (b) twisted
fields (η = −1). In both (a)
and (b) the circumference of
the spacetime is a/σ = 4,
dA = dB , |dA| /σ = 0.25,
and θ = 0

For large detector separation, the total amount of entanglement in the final state
is less than for small detector separation; however, the dependence on the detector
orientation is greater. For untwisted (twisted) fields and detectors with the chosen
energy gap, the entanglement in the final state decreases (increases) as the angle
with respect to the identified direction increases. This is opposite to the behaviour
of detectors in M0, as illustrated in Fig. 4.7.



70 4 Unruh-DeWitt Detectors in Quotients of Minkowski Space

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(a)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b)

Fig. 4.10 For two detectors in the cylindrical spacetime M−, the concurrence associated with
the final state of the two detectors C(ρAB)M− is plotted as a function of the detectors orientation
with respect to the identified direction; θ = 0 (θ = π/2) corresponds to detectors aligned with
(orthogonal to) the identified direction. The energy gap of the detectors is σ� = 0.75. This is done
for detectors coupled to (a) untwisted fields (η = 1) and (b) twisted fields (η = −1)

4.4 Summary

In summary, the behaviour of Unruh-DeWitt detectors depends on the global
topology of the spacetime in which they live. This was demonstrated by examining
detectors in three topologically distinct spacetimes, Minkowski space and the
cylindrical spacetimes M0 and M−. This may be surprising given that these
spacetimes are all locally indistinguishable and the detectors interact locally with
the field.
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However, the reason for the difference in the behaviour of detectors is that the
vacuum state is different in all three spacetimes, and depends on the boundary
conditions satisfied by the field—both the identifications used in constructing the
cylindrical spacetimes M0 and M− and whether the field is twisted or not. This is
a quantum property of the vacuum state and would not occur classically because the
classical vacuum state of the field vanishes everywhere and not subject to quantum
fluctuations.

What has been shown in this chapter is that the transition probability of a detector
interacting locally with the field and the entanglement and correlations harvested by
a pair of detectors are sensitive to these boundary conditions. Specifically, both the
correlations and entanglement harvested by a pair of detectors is greatest when their
energy gap is small and positive. Furthermore, the orientation of a pair of detectors
with respect to the identified direction in both M0 and M− affects the entanglement
harvested by the detectors.4

In the process of investigating how topological identifications of Minkowski
space affect the entanglement harvesting protocol, the matrix elements PA, PB ,
X, and C defining the final state ρAB of a pair of detectors were computed in
Minkowski space and the two cylindrical spacetimes M0, and M−; these quantities
are summarized in Tables 4.1, 4.2, and 4.3.

The cylindrical spacetimes M0 and M− studied in this chapter can equivalently
be thought of as cavities with appropriate boundary conditions imposed on the field
living inside the cavity. As discussed above, these boundary conditions affect how
entangled a pair of detectors become while interacting with the vacuum state of the
field. In a potential experiment to test for the presence of vacuum entanglement,
one might construct a cavity in such a way that the resulting boundary conditions
imposed on the field serve to amplify the entanglement harvested by a pair of
detectors.
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Chapter 5
Unruh-DeWitt Detectors Around
(2+1)-Dimensional Black Holes

Quantum field theories have proven extremely useful in describing the fundamental
interactions that govern our world—the Weinberg-Salam model has successfully
unified the electromagnetic and weak interactions, and quantum chromodynamics
provides an excellent description of the strong force. The success of these theories
relies on perturbative quantum field theory. However, general relativity refuses to
admit such a quantum description.

Constructing a consistent theory of quantum gravity is hard. It necessitates
a radical departure from conventional quantum field theory—no longer can we
quantize matter on a fixed background, everything must be quantized together
including spacetime itself. Furthermore, taking general relativity as an ordinary field
theory, the coupling constant has units of inverse mass, which implies the theory is
nonrenormalizable and will fail to be perturbatively quantized. These issues, and
others [12], pose difficult problems that need to be overcome in the construction of
a satisfactory theory of quantum gravity.

Confronted with these issues, we are motivated to look for simpler models
of gravity. General relativity in (2+1)-dimensions is such a model. Many of the
fundamental issues with quantizing the (3+1)-dimensional theory appear in the
(2+1)-dimensional theory. However, the (2+1)-dimensional theory is both mathe-
matically and physically simpler. For example, the only degrees of freedom of the
lower dimensional theory are topological and every solution to the field equations
is either flat or has constant curvature. For these reasons, studying gravity in (2+1)-
dimensions has been very instructive [5].

The Einstein-Hilbert action for a (2+1)-dimensional spacetime is

S = 1

16πG

∫
dx3√−g [R − 2�] , (5.1)

where R is the Ricci scalar and � the cosmological constant. Variation of this action
with respect to the metric yields the equations of motion for the gravitational degrees
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of freedom of the theory. For a negative cosmological constant � = −1/�2 these
equations admit a black hole solution of the form

ds2 = −
(
r2 − r2

h

�2

)
dt2 +

(
r2 − r2

h

�2

)−1

dr2 + r2dφ2, (5.2)

in Schwarzchild-like coordinates: t ∈ (−∞,∞), r ∈ (0,∞), and φ ∈ (0, 2π).
This solution has a horizon at rh = �

√
M , where M is the mass of the black hole.

This spacetime was discovered in 1992 by Bañados et al. [2, 3] and is appropriately
known as the BTZ black hole; generalizations to charged and rotating black holes
exist [5].

By making an appropriate topological identification of the BTZ black hole, the
RP2 geon spacetime is constructed. The RP2 geon1,2 is locally indistinguishable
from the BTZ spacetime in the exterior region (the spacetime metric is the same).
We will see that the RP2 geon black hole is an intermediate case between stationary
and dynamical black holes, in the sense that the non-stationary features are behind
the past and future horizons of the black hole [16].

The first aim of this chapter is to investigate how quantum field theory on the BTZ
and RP2 geon black holes differ,3 especially in their exterior regions where they are
locally identical. To do so, we evaluate the transition rate of a detector sitting at a
fixed distance away from the horizon of both black holes. We will demonstrate that a
detector operating in the exterior region of the RP2 geon black hole develops a time-
dependent transition rate, and is therefore sensitive to the non-stationary features
behind its horizons [24].

The second aim of this chapter is to examine the entanglement harvesting
protocol developed in Chap. 3 in the BTZ spacetime. In addition to serving as an
example of the formalism, this will allow us to probe the entanglement structure of
the Hartle-Hawking vacuum of a conformally coupled massless scalar field in an

1The term geon is short for “gravitational-electromagnetic entity”, and was introduced by
Wheeler [27] as a configuration of the gravitational field which has the spatial topology of R

3

and is asymptotically flat, so that the mass of the geon may be defined by Arnowitt-Deser-Misner
methods. Wheeler’s goal was to describe all of classical physics in terms of these geons. To quote
Misner and Wheeler [21]:

If classical physics can be regarded as comprising gravitation, source free electromag-
netism, unquantized charge, and unquantized mass of concentrations of electromagnetic
field energy (geons), then classical physics can be described in terms of curved empty space,
and nothing more.

Sorkin generalized this notion of the geon to non-trivial spatial topologies [25], allowing for the
possibility of black hole geons, such as the RP2 geon we will consider here.
2As discussed by Louko [16], these black hole geons are not expected to be the result of stellar
collapse as the non-trivial topology of the black hole geon is present since arbitrarily early times.
3Such an investigation was first carried out by Louko and Marolf [17] in the case of the
Schwarzchild and associated RP3 geon, albeit with different methods and focus.
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operational manner. We will investigate how the entanglement that results between
two Unruh-DeWitt detectors interacting locally with the vacuum depends on the
properties of BTZ black hole [9].

We begin this chapter in Sect. 5.1 by constructing the BTZ spacetime via
topological identifications of (2+1)-dimensional anti-de Sitter space (AdS3). Then
we construct the RP2 geon spacetime by further identification. In Sect. 5.2 we
derive the Wightman functions associated with the Hartle-Hawking vacuum on both
spacetimes from the AdS3 Wightman functions using the method of images. In
Sect. 5.3 we compare the transition rate of a stationary detector outside the BTZ
horizon with an identical detector in the RP2 geon spacetime. We find that while
the transition rate is constant in the BTZ spacetime, the transition rate of the same
detector in the RP2 geon spacetime is time-dependent, even though the spacetime
metric is identical in the region in which the detectors are operating. In Sect. 5.4
we examine the entanglement harvesting protocol for two detectors located outside
the BTZ horizon and interpret the results in terms of the local Hawking temperature
experienced by the detectors and red shift effects. We summarize the results present
in Sect. 5.5.

5.1 The BTZ and RP2 Geon Black Hole Spacetimes

In this section we will present the quotient space construction of the BTZ and
RP2 geon black holes. The (2+1)-dimensional AdS3 space can be defined as the
restriction to the submanifold

X2
1 +X2

2 − T 2
1 − T 2

2 = −�2, (5.3)

where � > 0 is the AdS length scale, embedded in the flat four-dimensional space
R

2,2 with coordinates (X1, X2, T1, T2) and metric

ds2 = dX2
1 + dX2

2 − dT 2
1 − dT 2

2 . (5.4)

The BTZ black hole may be constructed by quotienting an open region of
AdS3 with the isometry group Z [5]. A set of coordinates on AdS3 well suited
to implement this quotient space construction and which cover the exterior region
of the black hole are the BTZ coordinates:

X1 = �
r

rh
sinh

( rh
�
φ
)
, X2 = �

√
r2

r2
h

− 1 cosh
( rh
�2 t
)
,

T1 = �
r

rh
cosh

( rh
�
φ
)
, T2 = �

√
r2

r2
h

− 1 sinh
( rh
�2 t
)
, (5.5)
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where

t ∈ (−∞,∞), r ∈ (rh,∞), and φ ∈ (−∞,∞). (5.6)

In these coordinates the induced metric on AdS3 from the embedding space R
2,2 is

ds2 = −
(
r2 − r2

h

�2

)
dt2 +

(
r2 − r2

h

�2

)−1

dr2 + r2dφ2. (5.7)

In the BTZ coordinates, the Z quotient is realized by the identification

� : (t, r, φ) ∼ (t, r, φ + 2π), (5.8)

so that Z � {�n}. The action of this quotient results in the coordinate φ becoming
an angular coordinate φ ∈ (0, 2π). The resulting spacetime is known as the BTZ
black hole MBTZ and its metric is given by Eq. (5.7). Since the BTZ spacetime was
constructed from a Z quotient of AdS3, it is a quotient spacetime

MBTZ =MAdS3/Z. (5.9)

The RP2 geon spacetime is constructed by a further quotient, which is best
realized in the null coordinates U and V , which cover the entire BTZ spacetime:

r

rh
= 1− UV

1+ UV
and

rht

�2 = ln

√
−V

U
. (5.10)

The embedding coordinates (X1, X2, T1, T2) may be expressed in terms of the null
coordinates as

X1 = �

(
1− UV

1+ UV

)
sinh

( rh
�
φ
)
, X2 = �

V − U

1+ UV
,

T1 = �

(
1− UV

1+ UV

)
cosh

( rh
�
φ
)
, T2 = �

V + U

1+ UV
. (5.11)

In the null coordinates the BTZ metric takes the form

ds2 = − 4�2

(1+ UV )2
dUdV + r2

h

(
1− UV

1+ UV

)2

dφ2. (5.12)

The RP2 geon spacetime Mgeon is constructed by the following identification of
MBTZ [18, 19]

J : (U, V, φ) ∼ (V ,U, φ + π) . (5.13)
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As φ ∈ (0, 2π) is an angular coordinate we see that J 2 = e, and therefore
J generates a Z2 � {e, J } action on the BTZ spacetime. Therefore, the geon
spacetime is seen to be the quotient spacetime

Mgeon =MBTZ/Z2. (5.14)

The Z2 quotient acts without fixed points and properly discontinuously [16].
In terms of the Penrose diagram in Fig. 5.1a, the identification J acts by

a reflection around the vertical axis and a rotation by π in the suppressed φ

direction; this results in the Penrose diagram of the RP2 geon spacetime depicted
in Fig. 5.1b. In the BTZ coordinates J maps a point (t, r, φ) in region I to the
point (−t, r, φ + π) in region III. In regions II and IV, J acts by identify-
ing the points (t, r, φ) ∼ (−t, r, φ + π). As a result of these identifications,
the spatial topology of the RP2 geon spacetime is the real projective space4

RP2/{point at infinity}. These identifications also select a preferred spatial slice at
t = 0 [16].

As mentioned in the introduction to this chapter, the RP2 geon spacetime is
an intermediate case between a stationary black hole and a dynamical black hole.
A spacetime is stationary if there exists a globally defined timelike Killing field,
otherwise the spacetime is dynamic [26]. One may expect that both the BTZ and
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Fig. 5.1 The Penrose diagram of the (a) BTZ and (b) RP2 geon black holes [3, 8]. The
singularities are indicated by the wavy lines and the horizons by the diagonal lines. The red dashed
lines indicated the orbits of the timelike Killing field ∂t . In (b) the blue dotted line indicates the
preferred time t = 0; see the discussion below Eq. (5.34)

4
RP2 is the topological space of lines passing through the origin in R

3 and is best thought of as a
2-sphere with points on opposite sides of the sphere identified.
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RP2 geon spacetimes admit such a Killing field seeing as in the exterior region both
black holes are locally indistinguishable (their metric is the same), and expressed in
the BTZ coordinates the metric is independent of the coordinate t . However, only
the BTZ spacetime is stationary.

This is best illustrated by examining the orbits of the timelike Killing field ∂t in
the RP2 geon spacetime [16], which are plotted in red in Fig. 5.1b. Points along the
dashed line behind the future horizon are identified with points along the dashed line
behind the past horizon. As a consequence, where the orbits of the timelike Killing
field run into the dashed line, the Killing field has a sign ambiguity. This results in
the timelike Killing field ∂t not being globally defined on the RP2 geon spacetime.
This feature of the RP2 geon black hole is hidden behind its past and future horizons.
However, as we will show in Sect. 5.3, an Unruh-DeWitt detector operating in the
exterior region of the RP2 geon spacetime is sensitive to this feature.

5.2 The Wightman Function in the AdS3, BTZ, and RP2

Geon Spacetimes

Beginning with the Wightman function in AdS3, we derive the Wightman function
in both the BTZ and RP2 geon spacetimes via the method of images. For a
conformally coupled massless scalar field described by the action

I = −
∫

d3x
√−g

(
1

2
gμν∂μφ ∂νφ + 1

16
Rφ2

)
, (5.15)

the Wightman function in AdS3 is [1]

WAdS3(x, x
′) = 1

4π
√

2�

(
1√

σ(x, x′)
− ζ√

σ(x, x′)+ 2

)
, (5.16)

where σ(x, x′) is the square of the geodesic distance between the spacetime points
x and x′ in the embedding space R

2,2 divided by �2

σ(x, x′) = 1

2�2

[
(X1 −X′1)2 − (T1 − T ′1)2 + (X2 −X′2)2 − (T2 − T ′2)2

]
.

(5.17)

The parameter ζ ∈ {−1, 0, 1} appearing in Eq. (5.16) specifies either Neumann
(ζ = −1), transparent (ζ = 0), or Dirichlet (ζ = 1) boundary conditions satisfied
by the field at spatial infinity.
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The BTZ Wightman function can be constructed from the AdS3 Wightman
function using the method of images5

WBTZ(x, x
′) =

∞∑
n=−∞

WAdS3(x, �
nx′)

= 1

4π
√

2�

∞∑
n=−∞

(
1√

σ(x, �nx′)
− ζ√

σ(x, �nx′)+ 2

)
. (5.18)

The evaluation of σ(x, �nx′) depends on whether the points x and x′ are inside or
outside the horizon of the black hole. We will ultimately be interested in detectors
outside the black hole, so let us suppose x = (t, r, φ) and x′ = (t ′, r ′, φ′) with
r, r ′ > rh. To evaluate σ(x, �nx′), Eq. (5.5) is substituted into Eq. (5.17) yielding

σ(x, �nx′) = rr ′

r2
h

cosh
[ rh
�
(�φ − 2πn)

]
− 1

− (r2 − r2
h)

1
2 (r ′2 − r2

h)
1
2

r2
h

cosh
[ rh
�2�t

]
, (5.19)

where �φ := φ − φ′ and �t := t − t ′.
From Eqs. (5.18) and (5.19) we note that WBTZ(x, x

′) is periodic in imaginary
time with a period

T −1 = 2π�2

rh
= 2π

κ
, (5.20)

where κ is the surface gravity of the black hole. This periodicity implies that
WBTZ(x, x

′) is a thermal Wightman function associated with the temperature T

[5]. Further, by examining the analyticity properties of WBTZ(x, x
′), Lifschytz and

Ortiz [14] demonstrated that this Wightman function is associated with the Hartle-
Hawking vacuum.6

The RP2 geon Wightman function can be constructed by an additional image
sum over Z2 � {e, J }

Wgeon(x, x
′) = WBTZ(x, x

′)+WBTZ(x, Jx
′), (5.21)

where

5We will restrict ourselves to the study of untwisted fields and set η = 1 in Eq. (B.1).
6The Hartle-Hawking vacuum is the quantum state of the field that describes the equilibrium of the
black hole with thermal radiation at the Hawking temperature T = κ/2π [4, 22].



80 5 Unruh-DeWitt Detectors Around (2+1)-Dimensional Black Holes

WBTZ(x, Jx
′) =

∞∑
n=−∞

WAdS3(x, J�
nx′)

= 1

4π
√

2�

∞∑
n=−∞

(
1√

σ(x, J�nx′)
− ζ√

σ(x, J�nx′)+ 2

)
.

(5.22)

This is the RP2 geon Wightman function induced by the BTZ Hartle-Hawking
vacuum via the method of images. This Wightman function has been shown to
correspond to a Hartle-Hawking-like vacuum state in the RP2 geon spacetime
[8, 17].

In evaluating σ(xD(τ), J�
nxD(τ − �s̃)), we note that the action of J is to swap

U and V and identify φ with φ + π . Swapping U and V results in t → −t and
X2 → −X2, which can be seen from Eqs. (5.10) and (5.11), respectively. Again
supposing x = (t, r, φ) and x′ = (t ′, r ′, φ′) and r, r ′ > rh, σ(x, J�nx′) evaluates to

σ(x, J�nx′) = rr ′

r2
h

cosh
[ rh
�

(
�φ − 2π

[
n+ 1

2

])]
− 1

+ (r2 − r2
h)

1
2 (r ′2 − r2

h)
1
2

r2
h

cosh
[ rh
�2 (t + t ′)

]
. (5.23)

From Eq. (5.23), together with Eqs. (5.21) and (5.22), we observe that the RP2

geon Wightman function no longer depends on the difference in coordinate times
t and t ′, but rather on their sum. This implies that the Wightman function induced
by the BTZ Wightman function via the method of images is not invariant under the
isometry generated by the timelike Killing field ∂t . This might have been expected
based on the discussion at the end of Sect. 5.1, in which it was shown that the RP

2

geon spacetime is not stationary. This feature is reflected in the time dependence
of the RP2 geon Wightman function. For spacetime points in the far future or far
past (|t + t ′| → ∞), we see from Eq. (5.23) that WBTZ(x, Jx

′) vanishes and the
RP

2 geon Wightman function is identical to the BTZ Wightman function. Further
discussion of quantum field theory on geon spacetimes can be found in [15–19].

5.3 Detectors Outside the BTZ and RP2 Geon Black Holes

Using the Wightman functions derived in the previous section we will examine the
behaviour of static Unruh-DeWitt detectors operating in the exterior region of both
the BTZ and RP

2 geon black holes.7 Specifically, we will evaluate the transition

7Detectors in the BTZ spacetime have been studied in the past by Lifschytz and Ortiz [14] and
more recently by Hodgkinson and Louko [10, 11].
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rate of these detectors given in Eq. (3.16). We will find that while the transition rate
of a detector outside the BTZ black hole is time-independent—as expected since
the BTZ spacetime is stationary and the detector static—the transition rate of an
equivalent detector in the RP2 geon spacetime is time-dependent [24].

In both the BTZ and RP2 geon spacetimes, suppose the trajectory of the detector
is such that it remains at a fixed distance R > rh from the black hole

xD(τ) :=
⎧⎨
⎩t =

�√
R2 − r2

h

τ, r = R, φ = �,

⎫⎬
⎭ , (5.24)

where the above trajectory is parametrized in terms of the detectors proper time τ .
We begin by evaluating the transition rate of a detector in the BTZ spacetime

moving along the trajectory given in Eq. (5.24) with an energy gap �. In the sharp
switching limit (discussed in Sect. 3.1), the transition rate is given by Eq. (3.16)

ṖBTZ(τ ) = λ2
(

1

4
+ 2

∫ �τ

0
ds Re

[
e−i�s�WBTZ(xD(τ), xD(τ − �s̃))

])

= λ2

(
1

4
+ 1

2π
√

2

∞∑
n=−∞

∫ �τ/�

0
ds̃ Re

×
[
e−i�s̃�

(
1√

σ(xD(τ), �nxD(τ − �s̃))

− ζ√
σ(xD(τ), �nxD(τ − �s̃))+ 2

)])
, (5.25)

where we have introduced the dimensionless integration variable s̃ := s/�. Further,
we have

σ
(
xD(τ), �

nxD(τ − �s̃)
) = 2

R2 − r2
h

r2
h

⎡
⎣ R2

R2 − r2
h

sinh2
(
nπ

rh

�

)

− sinh2

⎛
⎝ rh√

R2 − r2
h

s̃

2

⎞
⎠
⎤
⎦ . (5.26)

As shown by Hodgkinson and Louko [10], and summarized in Appendix C, taking
the limit in which the detector is turned on in the far past (�τ →∞) the transition
rate can be written as
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ṖBTZ = λ2

2π
e−�β�/2

∞∑
n=−∞

∫ ∞
0

dy cos (y�β�/π)

×
⎡
⎣ 1√

Kn + cosh2 y

− ζ√
Qn + cosh2 y

⎤
⎦ , (5.27)

where

Kn := R2

R2 − r2
h

sinh2
(
nπ

rh

�

)
, Qn := Kn + r2

h

R2 − r2
h

, andβ := 2π

√
R2 − r2

h

rh
.

Expressing the transition rate in this form lends itself to being evaluated numerically.
Note the transition rate is independent of τ , and therefore we have dropped the
explicit time dependence in Eq. (5.27), i.e. ṖBTZ(τ )→ ṖBTZ.

As shown in [6, 7], the KMS condition8 implies the following condition on the
transition rate ṖD(�) of a particle detector with energy gap �

ṖD(�) = e−α�ṖD(−�). (5.29)

We note from Eq. (5.27) that the BTZ transition rate ṖBTZ(�) satisfies the KMS
condition with α = �β. Therefore the detector sees the field at a temperature
1/�β, which corresponds to the local Hawking temperature9 at the location of the
detector [10]. This conclusion will be important for the interpretation of the results
in the next section.

We now evaluate the transition rate of the same detector outside the RP2 geon
black hole. Since the RP2 geon Wightman function is equal to the Wightman
function in the BTZ spacetime plus an image term, Eq. (5.21), the transition rate
in the RP2 geon spacetime is

Ṗgeon(τ ) = ṖBTZ +�Ṗ (τ), (5.30)

where

8The Kubo-Martin-Schwinger (KMS) condition [13, 20] is a general definition of equilibrium
states in terms of the Wightman function. For a timelike trajectory x(τ), a state of the field ρ ∈
S (Hφ

)
satisfies the KMS condition if the Wightman function Wρ(τ, τ

′) := tr
(
ρ φ[x(τ)]φ[x(τ ′)])

satisfies

W(τ − iα, τ ′) = W(τ ′, τ ), (5.28)

the temperature of the state being 1/α.
9The local Hawking temperature is given by the Tolman relation 1/�β = (−g00)

−1/2 T , where g00
is the coefficient in front of dt2 in the line element in Eq. (5.2).
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�Ṗ (τ) := 1

2π
√

2

∞∑
n=−∞

∫ ∞
0

ds̃ Re

[
e−i�s̃�

(
1√

σ(xD(τ), J�nxD(τ − �s̃))

− ζ√
σ(xD(τ), J�nxD(τ − �s̃))+ 2

)]
, (5.31)

and

σ(xD(τ), J�
nxD(τ − �s̃)) = β2

2π2

(
R2

R2 − r2
h

sinh2
[
π
(
n+ 1

2

) rh

�

]

+ cosh2
[
πτ

β�
− πs̃

β

])
. (5.32)

Defining

K̄n := R2

R2 − r2
h

sinh2
[
π
(
n+ 1

2

) rh

�

]
and Q̄n := Kn + r2

h

R2 − r2
h

, (5.33)

and changing the integration variable to y = πs̃/β, the second term in Eq. (5.30)
becomes

�Ṗ (τ) := 1

2π

∞∑
n=−∞

∫ ∞
0

dy cos (��βy/π)

⎡
⎢⎢⎣ 1√

K̄n + cosh2
[
y − πτ

β�

]

− ζ√
Q̄n + cosh2

[
y − πτ

β�

]

⎤
⎥⎥⎦ . (5.34)

From Eq. (5.34) we see that for large negative τ the integrand is small and
�Ṗ (τ) ≈ 0. With this observation and Eq. (5.30), we conclude that the transition
rate of a detector operating in the far past (large negative τ ) is identical to the
transition rate of the same detector in the BTZ spacetime. For τ � 0, the integrand
does not vanish and �Ṗ (τ) is significant. From these observations we conclude that
the time-dependent contribution to the RP2 geon transition rate �Ṗ (τ) turns on
around τ ≈ 0, and remains on as τ →∞. At this proper time (τ = 0), the detector
is on the preferred hypersurface t = 0, which is singled out by the non-stationary
features of the RP2 geon spacetime located behind its past and future horizons
(see Fig. 5.1). The fact that the transition rate develops a time-dependence after the
detector has crossed this surface (t = 0) demonstrates the detectors dependence on
the non-stationary features of the RP2 geon spacetime.
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Having simplified the expressions for the transition rate of a detector in the BTZ
and RP2 geon spacetimes in Eqs. (5.27), (5.30), and (5.34), we now evaluate these
expressions numerically10 and plot these transition rates as a function of the read out
time of the detector and the detector’s energy gap for the field satisfying Neumann
(Fig. 5.2), transparent (Fig. 5.3), and Dirichlet boundary conditions (Fig. 5.4).

A few remarks on the plots shown in Figs. 5.2, 5.3, and 5.4 are given here.

1. The first observation to be made from Figs. 5.2, 5.3, and 5.4 or Eq. (5.34)
is that the transition rate of a detector in the RP

2 geon spacetime is time-
dependent. That is, a detector operating in the exterior region of the RP2 geon
spacetime is sensitive to the non-stationary features of the spacetime located
behind its horizon. This time dependence appears after the detector has crossed
the preferred hypersurface t = 0, after which the transition rate oscillates around
the transition rate of an identical detector in the BTZ spacetime. This suggests
that, in principle, by observing the transition rate of such a detector one may be
able to infer the location of this preferred time slice.

2. In the analysis above the detector was turned on in the asymptotic past. From
Figs. 5.2a, 5.3a, and 5.4a we see that the transition rate of a detector in the
RP2 geon spacetime only differs from the transition rate of a detector in the
BTZ spacetime when the read out time is approximately greater or equal to the
preferred time t = 0. This behaviour was observed in [17, 18] for detectors in
the RP3 geon spacetime.

3. From Figs. 5.2b, 5.3b, and 5.4b we see that detectors in the RP
2 geon spacetime

with an energy gap close to zero vary more dramatically than detectors with a
larger or smaller energy gap. This could have been anticipated by noting that the
integrand in Eq. (5.34) oscillates with a frequency proportionally to �. We see
that by tuning � to a value close to zero increases the detector’s sensitivity to the
non-stationary features of the RP

2 geon spacetime.
4. Upon comparison of Figs. 5.2, 5.3, and 5.4 we see that the boundary condition

satisfied by the field at spatial infinity affects the transition rate of a detector.
The transition rate in both spacetimes is largest when the field satisfies Neumann
(ζ = −1) boundary conditions and smallest when it satisfies Dirichlet (ζ = 1)
boundary conditions.

10The numerical calculations were carried out in Mathematica. The integrals
appearing in Eqs. (5.27) and (5.34) were evaluated from zero to infinity using
NIntegrate with PrecisionGoal → 4, AccuracyGoal → 4, and Method
→“ExtrapolatingOscillatory”. The sums appearing in Eqs. (5.27) and (5.34) were
evaluated from n = −20 to n = 20. To generate the plots in Figs. 5.2, 5.3, and 5.4, the transition
rate was evaluated for 80 and 120 points, respectively, uniformly sampled across the domain of
each plot.
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Fig. 5.2 The transition rate of a static detector in both the BTZ and RP2 geon spacetimes is plotted
as a function of (a) the proper time πτ/�β at which the detector is read for a fixed energy gap of the
detector, and (b) the energy gap of the detector �β� for a fixed proper time at which the detector
is read. In both (a) and (b) rh/� = 0.5, R2/r2

h = 10, and the field satisfies Neumann boundary
conditions (ζ = −1) at spatial infinity. In (a) the dotted and solid lines of the same colour indicate
the transition rate of an identical detector in the BTZ and RP2 geon spacetimes, respectively

5.4 Entanglement from the Black Hole Vacuum

How entangled do two static Unruh-DeWitt detectors become by interacting locally
with the Hartle-Hawking vacuum in the exterior region of the BTZ black hole? To
answer this question we will apply the entanglement harvesting protocol developed
in Chap. 3 [9].

We consider two detectors A and B at fixed distances RA and RB from the BTZ
black hole with identical energy gaps � = �A = �B . The spacetime trajectories of
such detectors are

xA(τA) := {t = τA/bA, r = RA, φ = �A} , (5.35a)
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(a) Transparent boundary conditions (ζ = 0)

(b) Transparent boundary conditions (ζ = 0)

−20 −15 −10 −5 0 5 10
−2

−1

0

1

2

3

4

Fig. 5.3 The transition rate of a static detector in both the BTZ and RP2 geon spacetimes is plotted
as a function of (a) the proper time πτ/�β at which the detector is read for a fixed energy gap of the
detector, and (b) the energy gap of the detector �β� for a fixed proper time at which the detector
is read. In both (a) and (b) rh/� = 0.5, R2/r2

h = 10, and the field satisfies Neumann boundary
conditions (ζ = 0) at spatial infinity. In (a) the dotted and solid lines of the same colour indicate
the transition rate of an identical detector in the BTZ and RP2 geon spacetimes, respectively

xB(τB) := {t = τB/bB, r = RB, φ = �B} , (5.35b)

where τA and τB are the proper time of each detector and bA and bB are red shift
factors given by

bA := dτA

dt
=
√
R2
A − r2

h

�
and bB := dτB

dt
=
√
R2
B − r2

h

�
.

Without loss of generality, we will consider detector A being closer to the horizon
than detector B, rh < RA < RB .
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(a) Dirichlet boundary conditions (ζ = 1)

(b) Dirichlet boundary conditions (ζ = 1)
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Fig. 5.4 The transition rate of a static detector in both the BTZ and RP2 geon spacetimes is plotted
as a function of (a) the proper time πτ/�β at which the detector is read for a fixed energy gap of the
detector, and (b) the energy gap of the detector �β� for a fixed proper time at which the detector
is read. In both (a) and (b) rh/� = 0.5, R2/r2

h = 10, and the field satisfies Neumann boundary
conditions (ζ = 1) at spatial infinity. In (a) the dotted and solid lines of the same colour indicate
the transition rate of an identical detector in the BTZ and RP2 geon spacetimes, respectively

As we did in Chap. 4, we will choose the switching functions of the detectors to
be Gaussian

χA(τA) = e−τ 2
A/2σ 2

and χB(t) = e−t2B/2σ 2
, (5.36)

with the interpretation that detector A and B are interacting with the field for an
approximate amount of proper time kσ , centred around the spacelike hypersurface
t = 0; k should be chosen so that the interaction between the field and detectors is
negligible at the proper time ±kσ .
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Suppose that prior to the interaction with the field both detectors are in their
ground state. After the interaction has ceased, the bipartite state of the detectors is
given by Eq. (3.24)

ρAB =

⎛
⎜⎜⎝

1− PA − PB 0 0 X

0 PB C 0
0 C∗ PA 0
X∗ 0 0 0

⎞
⎟⎟⎠+O

(
λ4
)
. (5.37)

To quantify how entangled the detectors become as a result of interacting with the
field, we will make use of the concurrence C(ρAB) given in Eq. (3.42)

C(ρAB) = 2 max
[

0, |X| −√PAPB

]
+O

(
λ4
)
, (5.38)

where

PA = λ2
∫

dτdτ ′ e−τ 2/2σ 2
e−τ ′2/2σ 2

e−i�(τ−τ ′)WBTZ
(
xA(τ), xA(τ

′)
)
, (5.39a)

PB = λ2
∫

dτdτ ′ e−τ 2/2σ 2
e−τ ′2/2σ 2

e−i�(τ−τ ′)WBTZ
(
xB(τ), xB(τ

′)
)
, (5.39b)

X = −λ2bAbB

∫
t>t ′

dtdt ′
[
e−b2

Bt
2/2σ 2

e−b2
At
′2/2σ 2

e−i�[bB t+bAt ′]

×WBTZ
(
xA(t

′), xB(t)
)

+ e−b2
At

2/2σ 2
e−b2

Bt
′2/2σ 2

e−i�[bAt+bB t ′]WBTZ
(
xB(t

′), xA(t)
) ]

, (5.39c)

as given by Eqs. (3.9) and (3.26).
We now evaluate PD for D ∈ {A,B} by changing integration variables to y :=

τ − τ ′ and y′ := τ + τ ′, and carrying out the integration over y′, which results in

PD = λ2√πσ
∫

dy e−y2/4σ 2
g(y)e−i�y, (5.40)

where g(y) := WBTZ
(
xA(τ), xA(τ

′)
)
, which from Eqs. (5.18) and (5.19) are seen to

be a function of y = τ − τ ′. From Eq. (5.40), note that PD is the Fourier transform
of the product of g(y) and e−y2/4σ 2

. Therefore, using the convolution theorem, we
may express PD as

PD = λ2σ 2
∫

dω e−σ 2(ω−�)2
F(ω), (5.41)
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where

F(ω) :=
∫

dy e−iωyg(y)

= 1

2

1

eω�β + 1

∑
n

[
Piω�β

2π −
1
2

(
coshα−n

)− ζP iω�β
2π −

1
2

(
coshα+n

)]
,

(5.42)

and Pν is the Legendre function of the first kind and

coshα∓n :=
1

b2
D

r2
h

�2

[
R2
D

r2
h

cosh
(

2πn
rh

�

)
∓ 1

]
. (5.43)

The integral defining F(ω) was first evaluated by Lifschytz and Ortiz [14]. Having
expressed the transition probability PD as a convolution of the Fourier transform of
the switching function and F(ω), PD may now be evaluated numerically.

We turn our attention to the evaluation of X in Eq. (5.39c). Using Eqs. (5.18)
and (5.19) it is seen that X may be expressed as

X = −λ2 bAbB

4π
√

2�

∞∑
n=−∞

([
I−n (A,B)+ I−n (B,A)

]
− ζ
[
I+n (A,B)+ I+n (B,A)

])
,

(5.44)

where

I∓n (A,B) := 1√
bAbB

rh

�

∫ ∞
−∞

dt

∫ t

−∞
dt ′ e

−b2
Bt

2/2σ 2
e−b2

At
′2/2σ 2

e−i�[bB t+bAt ′]√
cosh�∓n − cosh

[
rh
�2 (t

′ − t)
] ,

(5.45)

cosh�∓n :=
1

bAbB

r2
h

�2

[
RARB

r2
h

cosh
(

2πn
rh

�

)
∓ 1

]
. (5.46)

To simplify the integrals in I∓n (A,B), let us change integration variables to u := t

and s := t − t ′, so that

I∓n (A,B) = 1√
bAbB

rh

�

∫ ∞
−∞

du

×
∫ ∞

0
ds

e−b2
Bu

2/2σ 2
e−b2

A(u−s)2/2σ 2
e−i�[bBu+bA(u−s)]√

cosh�∓n − cosh
[
rh
�2 s
]
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= 1√
bAbB
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�

∫ ∞
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ds
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ei�bAs√
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∫ ∞
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Observe that
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Using Eq. (5.48), X simplifies to

X = −λ2K

∞∑
n=−∞

∫ ∞
0

dy e−γy2
cos θy

×
[

1√
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]
, (5.49)

where we have changed the integration variable to y := rhs/�
2 and defined
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2σ 2 , (5.50b)



5.4 Entanglement from the Black Hole Vacuum 91

θ := bAbB

b2
A + b2

B

(bB − bA)
�2

rh
�. (5.50c)

As expressed in Eq. (5.49), X may now be evaluated numerically.
Having brought both PD and X into a form that can be evaluated numerically,11

we may compute the concurrence C(ρAB) using Eq. (5.38). The concurrence is
plotted as a function of the proper distance12 the detectors are away from the BTZ
horizon in Fig. 5.5 and as a function of the proper distance between the detectors in
Fig. 5.6. In both figures σ = 1, M = 1, �/σ = 10, and the field satisfies Dirichlet
boundary conditions (ζ = 1) at spatial infinity.

In Fig. 5.5 we see that detectors placed closer to the horizon become less
entangled, and at a finite distance away from the horizon do not become entangled at
all. To interpret this behaviour it is helpful to examine the concurrence C(ρAB) given
in Eq. (5.38). We see that the larger the difference between |X| and

√
PAPB , the

greater the entanglement is in the final state of the two detectors; when
√
PAPB ≥

|X| the detectors do not become entangled. As the detectors move closer to the
horizon, they experience a greater Hawking temperature and thus their probability
of transitioning to their excited state is greater, increasing

√
PAPB . However, the

dominate effect governing the difference between |X| and
√
PAPB is the decrease

in |X| as the detectors move closer to the horizon. This is a result of the red shift
factors bA and bB appearing in the expression for X given in Eq. (5.39c), which
vanish as the detectors approach the horizon.

In Fig. 5.5 we also observe that detectors with larger energy gaps are able to
become entangled closer to the horizon. This is due to the fact that detectors with
a larger energy gap are harder to excite, which results in the term

√
PAPB being

smaller for such detectors.
In Fig. 5.6 we observe that as the separation between the detectors grows, the

entanglement between the detectors decreases. This is because correlations in the
vacuum state are small for spacetime points separated by a large distance, which
can be seen from the BTZ Wightman function in Eq. (5.18). We also observe that
the entanglement decreases more slowly for detectors with larger energy gap and
vanishes for finite detector separation.

11The numerical calculations were carried out in Mathematica. The integrals appearing in
Eqs. (5.40) and (5.49) were evaluated using NIntegrate with MaxRecursion → 40,
WorkingPrecision → 15, and Method →“DoubleExponential”. To generate the
plots in Figs. 5.5 and 5.6, the PD and X were evaluated for 100 points uniformly distributed across
the domain of each plot.
12The proper distance between two points x1 = (t, R1, φ) and x2 = (t, R2, φ), where R2 ≥ R1 ≥
rh, is

d(R1, R2) :=
∫ R2

R1

dr
�√

r2 − r2
h

= � ln

⎡
⎣R2 +

√
R2

2 − r2
h

R1 +
√
R2

1 − r2
h

⎤
⎦ .
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Fig. 5.5 The concurrence C(ρAB) of the final state of two static detectors operating in the exterior
region of the BTZ black hole is plotted as a function of the proper distance detector A is from the
horizon. The proper distance between the detectors is set to d(RA,RB)/σ = 1, and �/σ = 10,
M = 1, and the field satisfies Dirichlet boundary conditions (ζ = 1)
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Fig. 5.6 The concurrence C(ρAB) of the final state of two static detectors operating in the exterior
region of the BTZ black hole is plotted as a function of the proper distance separating them. The
proper distance between detector A and the horizon is d(rh, RA)/σ = 1, and �/σ = 10, M = 1,
and the field satisfies Dirichlet boundary conditions (ζ = 1)

5.5 Summary

We began in Sect. 5.1 by constructing both the BTZ and RP2 geon spacetimes from
AdS3 by appropriate topological identifications. In Sect. 5.2, using the fact that both
the BTZ and RP2 geon black holes are quotient spacetimes, we constructed the
Hartle-Hawking vacuum Wightman function associated with a conformally coupled
massless scalar field on both the BTZ and RP2 geon spacetimes from the AdS3
Wightman functions via the method of images.
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In Sect. 5.3 we used these Wightman functions to compute the transition rate of
an Unruh-DeWitt detector operating in the exterior region of the BTZ and RP2 geon
black holes. We saw that even though the metric in both spacetimes is identical
in the region where the detectors were operating, a difference in their transition
rates was observed. The transition rate of a detector in the RP2 geon spacetime
turned on in the asymptotic past will develop a time dependence in the future of the
preferred time hypersurface t = 0. Specifically, it will oscillate around the transition
rate of an identical detector in the BTZ spacetime, which is time-independent.
We conclude, in principle, a detector operating in the exterior region of the RP2

geon black hole is sensitive to the non-stationary features of the spacetime located
behind the past and future horizons. Information about the global structure of the
RP2 geon spacetime is encoded in the vacuum state of the field, and in principle
accessible by local measurements of the field with Unruh-DeWitt detectors. Since
the publication of these results [24], similar effects have been observed for detectors
in the Schwarzschild spacetime and the related RP3 geon spacetime [23].

In Sect. 5.4 we applied the entanglement harvesting protocol developed in
Chap. 3 to detectors operating in the exterior region of the BTZ black hole. We
derived the relevant matrix elements (PA, PB , and X) of the final state ρAB of the
two detectors necessary to compute the concurrence C(ρAB). The dependence of
this entanglement on the detector separation and proximity of the detectors to the
BTZ horizon was explained in terms of the response of the detectors to the local
Hawking temperature and red shift effects.

The purpose of investigating the entanglement harvesting protocol for detectors
in the BTZ spacetime is twofold: it serves as a concrete application of the formalism
developed in Chap. 3 and begins an investigation into how the entanglement
structure of a quantum field theory depends on the underlying spacetime geometry
as seen by local measurements of the field. The hope is that the entanglement har-
vesting protocol can be applied in other spacetime geometries to better understand
the connection between the entanglement structure of a quantum field theory and
the properties of a spacetime on which the field is defined.
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Part II
Quantum Reference Frames



Chapter 6
Quantum Reference Frames Associated
with Noncompact Groups

When we describe the configuration of a system, we almost always make use of a
classical reference frame. Suppose we wish to specify the speed of a boat traveling
along a flowing river. To do so we need a reference frame, which we usually take
to be either the moving water or the river bank. Everyday when we define up and
down, we use as a reference frame the gravitational field of the Earth. Indeed, the
lesson of relativity is that physical quantities only have meaning with respect to a
reference frame.

The same is true in quantum theory. When defining a basis for a Hilbert space we
employ a classical reference frame. For example, when defining the quantization
axis of a spin system we may make use of a classical magnetic field in a Stern-
Gerlach device. In the study of quantum fields on curved spacetime, the reference
frame with respect to which the fields are defined is the spacetime itself, as seen by
an observer employing a suitable coordinate system.

This state of affairs is not fully satisfactory for one notable reason: a quantum
system is being described with respect to a classical system, mixing elements from
conceptually different frameworks. We must remember that a reference frame is a
physical object, and as such it too is subject to the laws of quantum mechanics. At
some scale, the quantum properties of a reference frame will affect our description
of a system. Therefore, we need to ask: What happens when we replace a classical
reference frame with a quantum one?

The first to explore this question were Aharonov and Susskind [7, 8] who showed
that superselection rules may be lifted using an appropriate reference frame, a
point that has since been emphasized by many authors [15, 16, 20, 24, 25]. Shortly
after, quantum aspects of the equivalence principle were studied [5] and it was
demonstrated that quantum reference frames can be consistently incorporated in
quantum theory [6]. Since then, the study of quantum reference frames has taken on
an increasingly information-theoretic flavour [12], finding practical applications in
quantum interferometry [17], quantum communication [13] (see Chap. 7), cryptog-
raphy [19], and resource theories [23].
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Quantum reference frames have also proven useful in the study of quantum
gravity. General relativity does not make use of a reference frame in its construction;
it is a background independent theory1 and there is no a priori reason why its quanti-
zation should introduce a reference frame. Thus, we might reasonably expect that a
quantum theory of gravity will be background independent. These considerations
have led to the aspiration of building a relational quantum mechanics [30, 31].
Poulin has constructed a relational formulation of quantum theory by making
explicit use of quantum reference frames [27]. Furthermore, Rovelli has shown
that constructing physical observables in a generally covariant theory requires the
inclusion of the dynamics of the objects serving as reference frames [29], and
studied the consequences of this in quantum theory [28].

The natural language with which to describe reference frames is group theory,
owing to the fact that the transformations that describe the act of changing reference
frames form a group. Most discussion of quantum reference frames revolves around
reference frames defined with respect to compact groups. For example, the group
used to describe a change of phase reference in quantum optics is U(1) and the
group used to describe the transformation between orientations of a laboratory is
SO(3).

However, there are reference frames associated with noncompact groups that
are of physical interest. For example, special relativity is essentially the study
of reference frames associated with the Poincaré group. To study the quantum
properties of reference frames associated with these groups, the existing formalism
used to study quantum reference frames associated with compact groups will need
to be generalized to noncompact groups. The purpose of this chapter and the one
that follows is to embark on such a task by studying reference frames associated
with the noncompact group of translations and the noncompact group of Galilean
boosts.

We begin in Sect. 6.1 by introducing the G-twirl, which is a group average over
all possible orientations of a system with respect to an external reference frame,
which may be used to construct a relational description of a quantum system with
respect to a quantum reference frame. We then demonstrate the failure of the G-
twirl and this relational description when naively applied to situations involving
the noncompact groups of translations and Galilean boosts. However, we find
that the G-twirl over these groups naturally introduces a reduced state obtained
by tracing out the centre-of-mass degrees of freedom of a composite system. In
Sect. 6.2 we examine informational properties of this reduced state for systems of
two and three particles in fully separable Gaussian states with respect to an external
frame. Specifically, we study the entanglement that appears when moving from a
description of the system with respect to an external frame to a fully relational
description, which can alternatively be interpreted in terms of noise. This study
is motivated by the need to determine how best to prepare states in the external

1This is not quite true. Background structure such as topology, spacetime dimension, and metric
signature still exist, and may or may not be subject to quantization. See [33] for further discussion.
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partition in order to encode information in relational degrees of freedom, which
will be useful for various communication tasks [14]. We conclude this chapter in
Sect. 6.3 with a discussion and summary of the results presented.

6.1 Relational Descriptions

In the construction of a relational quantum theory, an essential task is the description
of a quantum system with respect to another quantum system. With this in mind,
we seek a way in which to remove any information contained in a quantum state
about its relation to an external reference frame. This is accomplished by the G-
twirl, which we introduce in Sect. 6.1.1 and apply to the group of translations and
Galilean boosts in Sect. 6.1.2.

6.1.1 Relational Description for Compact Groups

When the state of a system is described with respect to an external reference
frame, such that changes of this reference frame form a compact group, a relational
description constructed using the G-twirl is well studied [12].

Suppose we have a quantum system in the state ρ ∈ S(H), where H is the Hilbert
space associated with the system, described with respect to an external reference
frame. Changes of the orientation of the system with respect to the external frame are
implemented by U(g) ∈ U(H) acting on ρ, where U(g) is the unitary representation
of the group element g ∈ G, and G is the compact group of all possible changes
of the external reference frame. The relational description of ρ, that is, the quantum
state that does not contain any information about the external frame, is given by an
average over all possible orientations of ρ with respect to the external frame, with
each possible orientation given an equal weight

G[ρ] :=
∫

dg U(g) ρ U†(g), (6.1)

where dg is the Haar measure associated with the group G. This averaging operation
is known as the G-twirl. For compact groups the G-twirl takes states within the state
space S(H) to other states in S(H)

G : S(H)→ S(H). (6.2)

By averaging over all elements of the group, the G-twirl removes any relation to
the external reference frame that was implicitly made use of in the description of ρ.
What remains is only information about the relational degrees of freedom within the
system, that is, information unaffected by changes of the external reference frame.
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For example, if ρ ∈ S(H) describes a composite system of two particles such that
H = H1 ⊗ H2, what remains in G[ρ] is information about the relational degrees
of freedom between the two particles. Note that the G-twirl is performed via the
product representation U(g) = U1(g)⊗U2(g), where U1(g) ∈ U(H1) and U2(g) ∈
U(H2) are representations of the group G on each of the subsystems.

This relational description is used extensively in the study of quantum reference
frames involving compact groups [12, 13, 17, 22, 26]. However, when the G-twirl
operation is generalized to the case where the group G is noncompact, and thus does
not admit a normalized Haar measure, it results in non-normalizable states.

To illustrate this point consider the G-twirl of the state ρ ∈ S(H), where
H � L2(R), over the noncompact group of spatial translations T1 generated by
the momentum operator P . Expressing ρ in the momentum basis, we find

GT1 [ρ] =
∫

dg e−igP
(∫

dpdp′ ρ
(
p, p′

) |p〉〈p′|
)
eigP

= 2π
∫

dp ρ(p, p) |p〉〈p| , (6.3)

where dg is the Haar measure associated with T1 and in going from the first
to the second equality we have used the definition of the Dirac delta function
2πδ(p−p′) := ∫ dg eig(p−p′). Although the averaging operation is mathematically
well defined, the resulting state G[ρ] is not normalized, as the trace of GT1 [ρ] is
infinite.

For noncompact groups, the action of the G-twirl maps states to a space outside
of the state space S(H). This is a consequence of the Haar measure not being
normalized, i.e. the integral

∫
dg is infinite for noncompact groups. This issue does

not arise when twirling over a compact group for which there exists a normalized
Haar measure. Thus, the relational description constructed by averaging a system
over all possible orientations of a reference frame fails when the group describing
changes of the reference frame is noncompact.

One may try to remedy this problem by introducing a measure p(g) on the group
such that

∫
dg p(g) = 1, and interpreting p(g) as representing a priori knowledge of

how the average should be performed [9]. However, in general there is no objective
way to choose p(g)—if we want a normalized measure it cannot be invariant.

6.1.2 Relational Description for Noncompact Groups

We now construct a relational description of quantum states suitable for systems
described with respect to reference frames associated with the noncompact groups
of boosts and translations. We begin by twirling the state of a system of particles
ρ ∈ S(H) over all possible boosts and translations of the external reference frame
with respect to which ρ is defined. The result of this twirling is a non-normalizable
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state proportional to ICM ⊗ ρR , where ICM is the identity on the centre-of-mass
degrees of freedom and ρR := trCM ρ is a normalized density matrix describing the
relative degrees of freedom of the system. In doing so, we connect two approaches
to quantum reference frames that have been studied in the past: the approach
introduced by Bartlett et al. [12], which makes use of the G-twirl to remove any
information the state may have about an external reference frame, and the approach
of Angelo et al. [11], in which a partial trace over centre-of-mass degrees of freedom
is used to obtain a relational state.

Consider a composite system of N particles each with mass mn. We may partition
the Hilbert space H of the entire system as H = ⊗N

n=1 Hn where Hn � L2(R
3),

which spans the degrees of freedom defined with respect to an external frame
associated with the nth particle; we will refer to this as the external partition of the
Hilbert space. We may alternatively partition the Hilbert space as H = HCM ⊗HR ,
where HCM � L2(R

3) is associated with the degrees of freedom of the centre-of-
mass defined with respect to an external frame, and HR � L2(R

3N−3) is associated
with the relative degrees of freedom of the system defined with respect to a chosen
reference particle; we will refer to this partition as the centre-of-mass and relational
partition of the Hilbert space.

As was done in Sect. 6.1.1 for reference frames associated with compact groups,
to obtain a relational state we will average the state of our system over all possible
orientations—intended in a generic sense, meant here to be about translations and
boosts—with respect to the external frame. Here we consider the system to be
described with respect to an inertial external frame. Thus a change of the external
frame corresponds to acting on the system with an element of the Galilean group,
and the average over all possible orientations of the system with respect to the
external frame will be an average over the Galilean group.

The Galilean group Gal is a semidirect product of the translation group T4, the
group of boosts B3, and the rotation group SO(3),

Gal � T4 �

(
B3 � SO(3)

)
. (6.4)

We will limit our analysis to averaging over spatial translations T3, where T4 �
T1 � T3, and boosts B3. We will not average over rotations SO(3), since this has
been well studied elsewhere [12] and we are primarily interested in issues associated
with noncompact groups. Further, we do not average over time translations T1, as
this would require us to introduce a Hamiltonian to generate time translations, and
for now we are interested only in a relative description of the state at one instant
of time and not its dynamics. Suppose the state of a system is given with respect
to an external reference frame with a specific position and velocity. The operator
that results from these restricted averages is the state as seen by an observer who is
ignorant of both the position and velocity of the external reference frame.

The position and momentum operators associated with the centre-of-mass, XCM

and PCM , and relational degrees of freedom, Xi|1 and Pi|1, may be expressed in
terms of the operators Xn and Pn associated with the position and momentum
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operators of each of the N particles with respect to the external frame as

XCM = 1

M

N∑
n=1

mnXn, (6.5a)

PCM =
N∑
n=1

Pn, (6.5b)

Xi|1 = Xi − X1 for i ∈ {2, . . . , N}, (6.5c)

Pi|1 = Pi − mi

M
PCM for i ∈ {2, . . . , N}, (6.5d)

where M := ∑N
n=1 mn is the total mass, and without loss of generality we have

chosen to define the relative degrees of freedom with respect to particle 1. The above
operators satisfy the canonical commutation relations [XCM,PCM ] = [Xi|1,Pi|1] =
i, with all other combinations vanishing. Defining the relative degrees of freedom
in this way specifies particle 1 as the reference frame for the relational degrees of
freedom associated with the other particles. This will allow us to associate properties
of particle 1, such as its mass and quantum state, with properties of the reference
frame used in the relational description given below.

With the exception of the two-particle case, Pi|1 is not equal to the usually defined
relative momentum operator

Pri := μ1i

(
Pi

mi

− P1

m1

)
�= Pi|1 for i ∈ {2, . . . , N}, (6.6)

where μ1i := m1mi/(m1 + mi) is the reduced mass of particle 1 and the ith
particle, as one might expect. Alternatively, one may begin with the set of relative
momentum operators {Pri | i = 2, . . . , N} and construct canonically conjugate
relative position operators. However, we restrict ourselves to considering the
operators given in Eq. (6.5) and refer the reader to [11] for a more detailed discussion
of the nonuniqueness of canonically conjugate operators on HR .

The action of a translation g ∈ R
3 � T3 and boost h ∈ R

3 � B3 of the external
frame in the external partition H =⊗N

n=1 Hn is given by

UT (g) =
N⊗
n=1

e−ig·Pn , (6.7a)

UB(h) =
N⊗
n=1

eimnh·Xn , (6.7b)

and in the centre-of-mass and relational partition HCM ⊗HR is given by

UT (g) = e−ig·PCM ⊗ IR, (6.8a)

UB(h) = eiMh·XCM ⊗ IR. (6.8b)
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To carry out the average over T3 and B3, let us express ρ in the HCM ⊗ HR

partition in the momentum basis

ρ =
∫

dpCMdp′CMdpRdp′R ρ
(
pCM,p′CM,pR,p′R

) |pCM 〉〈p′CM | ⊗ |pR〉〈p′R| ,
(6.9)

where pCM and p′CM denote the momentum vector of the centre-of-mass and pR

and p′R denote the N − 1 relative momentum vectors. Making use of Eq. (6.8a), we
may average over all possible spatial translations of the external frame

GT [ρ] =
∫

dpCMdp′CMdpRdp′R ρ
(
pCM,p′CM,pR,p′R

)

×
∫

dgUT (g)
[
|pCM 〉

〈
p′CM

∣∣⊗ |pR〉〈p′R|
]
UT (g)†

= (2π)3
∫

dpCMdpRdp′R ρ
(
pCM,pCM,pR,p′R

) |pCM 〉〈pCM | ⊗ |pR〉〈p′R| .
(6.10)

From Eq. (6.10) we see that the effect of twirling over the group of translations T3 is
to project ρ into a charge sector of definite centre-of-mass momentum. That is, lack-
ing a reference frame associated with the translation group imposes a superselection
rule forbidding coherence between different centre-of-mass momentum eigenstates.

Similarly, we can average ρ over all possible boosts of the external frame with
the result

GB [ρ] =
∫

dxCMdx′CMdxRdx′R ρ
(
xCM, x′CM, xR, x′R

)

×
∫

dhUB(h)
[
|xCM 〉〈x′CM | ⊗ |xR〉〈x′R|

]
UB(h)†

=
(

2π

M

)3 ∫
dxCMdxRdx′R ρ

(
xCM, xCM, xR, x′R

) |xCM 〉〈xCM | ⊗ |xR〉〈x′R| ,
(6.11)

where xCM and x′CM denote the position vector of the centre-of-mass, xR and
x′R denote the N − 1 relative position vectors, and ρ

(
xCM, x′CM, xR, x′R

) =
〈xCM | 〈xR| ρ |xCM 〉 |xR〉. From Eq. (6.11) we see the effect of twirling over the
group of boosts B3 is to project ρ into a charge sector of definite centre-of-mass
position. That is, lacking a reference frame associated with the group of boosts
imposes a superselection rule forbidding coherence between different centre-of-
mass position eigenstates.

Averaging Eq. (6.10) over all boosts, using Eq. (6.8b), yields
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GB ◦ GT [ρ] = (2π)3
∫

dh
∫

dpCMdpRdp′R ρ
(
pCM,pCM,pR,p′R

)

× UB(h)
[ |pCM 〉〈pCM | ⊗ |pR〉〈p′R|

]
UB(h)†

= (2π)3
∫

dh
∫

dpCMdpRdp′R ρ
(
pCM −Mh,pCM −Mh,pR,p′R

)

× |pCM 〉〈pCM | ⊗ |pR〉〈p′R|

=
(

2π

M

)3 ∫
dh
∫

dpCMdpRdp′R ρ
(
h,h,pR,p′R

) |pCM 〉〈pCM |

⊗ |pR〉〈p′R|

=
(

2π

M

)3 ∫
dpCM |pCM 〉〈pCM |

⊗
∫

dpRdp′R
(∫

dh ρ
(
h,h,pR,p′R

)) |pR〉〈p′R|

=
(

2π

M

)3

ICM ⊗ ρR, (6.12)

where in the last line

ρR :=
∫

dpRdp′R
(∫

dh ρ
(
h,h,pR,p′R

)) |pR〉〈p′R| = trCM ρ, (6.13)

and we have made use of the resolution of the identity ICM =
∫
dpCM |pCM 〉〈pCM |.

The action of GB ◦ GT may be expressed as

GB ◦ GT [ρ] =
(

2π

M

)3 (
DCM ⊗ IR

)
[ρ] , (6.14)

where DCM denotes the operation that takes every operator on HCM to the identity
operator on that space and IR denotes the identity map on HR . Note that the
generators of T3 and B3 commute to a multiple of the identity, [XCM,PCM ] =
iICM , and consequently by application of the Baker-Campbell-Hausdorff equality
it can be shown that GB ◦ GT = GT ◦ GB . From the appearance of DCM , the
analogue of the completely depolarizing channel on HCM � L2(R

3), in Eq. (6.14),
we see that GB ◦ GT [ρ] contains no information about the centre-of-mass, and thus
no information about the external frame. However, all the information about the
relational degrees of freedom of the system is encoded in ρR , which is normalized.

By twirling over all possible boosts and translations of the system, we see from
Eq. (6.12) that the reduced state ρR naturally appears. This demonstrates how the
relational state ρR , which is used by Angelo et al. [10, 11] when analysing absolute
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and relative degrees of freedom, is obtained from the usual quantum reference
formalism [12].

Summarizing, the relational state is given as the output of a map � acting on
ρ ∈ S(H):

� : S(H)→ S(HR),

ρ �→ ρR = trCM ρ. (6.15)

The map � is qualitatively different than the G-twirl, as the domain of � is not
equal to its range.

In general, when transforming from the external partition H =⊗N
n=1 Hn, to the

centre-of-mass and relational partition H = HCM ⊗HR , entanglement will appear
between the centre-of-mass and relational degrees of freedom, as well as within the
relational Hilbert space HR . As a consequence the state ρR will be mixed, reflecting
the fact that information about the external degrees of freedom has been lost. This
is analogous to information about the external frame being lost in Eq. (6.1) when
averaging over all elements of a compact group. In the next section we will quantify
this information loss for systems of two and three particles in Gaussian states.

6.2 Gaussian Quantum Reference Frames

We now examine in detail the informational properties of the reduced state ρR of
the relational degrees of freedom given in Eq. (6.13) by examining systems of two
and three particles in one dimension distinguished by their masses. As mentioned
in Sect. 6.1, in general, entanglement will appear when moving from the external
partition H =⊗N

n=1 Hn to the centre-of-mass and relational partition H = HCM ⊗
HR . This entanglement is crucial in determining how to describe physics relative to
a particle within the system [11]. For example, if there is entanglement between the
centre-of-mass and the relational degrees of freedom, an observer identified with
the reference particle, particle 1 as chosen in Eq. (6.5), will describe the rest of the
system as being in a mixed state.

As a concrete example of the entanglement that can emerge when changing from
the external partition to the centre-of-mass and relational partition of the Hilbert
space, we consider systems of two and three particles in Gaussian states in the
external partition. The advantage of considering Gaussian states in the external
partition is that the transformation which takes the state from being specified in the
external partition to being specified in the centre-of-mass and relational partition is
a Gaussian unitary, that is, a state which is Gaussian in the external partition will
also be Gaussian in the centre-of-mass and relational partition. Further, if we are
interested in the reduced state ρR defined in Eq. (6.13), and the state of the particles
in either partition is a Gaussian state, then the trace over the centre-of-mass degrees
of freedom also results in a Gaussian state. Thus, by considering Gaussian states in
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the external partition we are able to make use of the extensive tools developed in the
field of Gaussian quantum information. We begin here by briefly reviewing relevant
aspects of Gaussian quantum information; for more detail the reader may consult
one of the many good references on the topic [1, 3, 35].

6.2.1 The Wigner Function and Gaussian States

Any density operator has an equivalent representation as a quasiprobability distri-
bution over phase space. To see this, we introduce the Weyl operator

D(ξ) := exp
(
iXT �ξ

)
, (6.16)

where X := (Q1, P1, . . . ,Qn, Pn) is a vector of phase space operators, ξ ∈ R
2n,

and � is the symplectic form defined as

� :=
n⊕

i=1

ω, where ω :=
(

0 1
−1 0

)
. (6.17)

A density operator ρ ∈ S(H) has an equivalent representation as a Wigner
characteristic function χ(ξ) := tr[ρD(ξ)], or by its Fourier transform which is
known as the Wigner function

W (x) :=
∫
R2n

d2nξ

(2π)2n exp
(
−ixT �ξ

)
χ (ξ) , (6.18)

where x := (q1, p1, . . . , qn, pn) is a vector of phase space variables.
An n-particle Gaussian state is a state whose Wigner function is Gaussian

W (x; x̄,V) =
exp
(
− 1

2 (x− x̄)T V−1 (x− x̄)
)

(2π)n
√

det V
, (6.19)

where x̄ := (q̄1, p̄1, . . . , q̄n, p̄n) is given by a vector of averages

x̄i := 〈Xi〉 = tr [Xiρ] , (6.20)

and V is the real 2n× 2n covariance matrix with components

Vij := 1

2
tr
[{
Xi − x̄i , Xj − x̄j

}
ρ
]
, (6.21)

where we have made use of the anticommutator {A,B} := AB + BA.
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6.2.2 The Two-Particle Case

We begin our analysis by considering two particles with masses m1 and m2 to be
in a tensor product of Gaussian states ρE = ρ1 ⊗ ρ2 in the external partition H =
H1 ⊗H2, where ρ1 ∈ S(H1) and ρ2 ∈ S(H2). Due to the tensor product structure
of ρE , the Wigner function of the composite system is a product of the Wigner
functions associated with particles 1 and 2

W (x; x̄E,VE) = W (x; x̄1,V1)W (x; x̄2,V2) . (6.22)

The reason for considering factorized states in the external partition, apart from their
common usage in the literature [13, 26], is that if we are to use the composite system
for communication (see Chap. 7), the tensor product structure is easily prepared as
it does not require an entangling operation.

As we will only be interested in the entanglement generated in moving from the
external partition to the centre-of-mass and relational partition, we may, without
loss of generality, set x̄1 = x̄2 = 0, as these averages can be arbitrarily adjusted via
local unitary operations in either partition, and thus do not affect the entanglement
properties under consideration.

Making use of Eq. (6.19), we find the covariance matrix associated with ρE
is given by VE = V1 ⊕ V2; the direct sum structure resulting from the fact
that we chose ρE to be a factorized state with respect to the external partition.
Using Williamson’s theorem [36], one can show that the most general form of the
covariance matrices V1 and V2 is

Vi = 1

μi

R (θi)S (2ri)R (θi)
T

= 1

μi

(
cosh 2ri − cos 2θi sinh 2ri sin 2θi sinh 2ri

sin 2θi sinh 2ri cosh 2ri + cos 2θi sinh 2ri

)
, (6.23)

where the free parameter μi = 1/
√

det Vi ∈ (0, 1] is the purity tr(ρ2
i ) of the state

ρi , R (θi) is a rotation matrix specifying a phase rotation by an angle θi ∈ [0, π/4],
and S(2ri) is a diagonal symplectic matrix specifying a squeezing of the Wigner
function parameterized by ri ∈ R.

Transforming to the Centre-of-Mass and Relational Partition
For two particles in one dimension the transformation from the external degrees of
freedom xE := (x1, p1, x2, p2), where xi and pi denote the position and momentum
of the ith particle with respect to an external frame, to the centre-of-mass and
relational degrees of freedom xCMR := (xcm, pcm, x2|1, p2|1), where xcm, pcm are
the position and momentum of the centre-of-mass with respect to an external frame
and x2|1, p2|1 are the position and momentum of particle 2 with respect to particle 1,
is given by Eq. (6.5) with N = 2 and vectors of operators replaced by a single
operator. Under this transformation the external covariance matrix VE transforms
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to VCMR =M2VEMT
2 , where M2 is given by

M2 :=

⎛
⎜⎜⎜⎝

m1
m1+m2

0 m2
m1+m2

0

0 1 0 1
−1 0 1 0
0 − m2

m1+m2
0 1− m2

m1+m2

⎞
⎟⎟⎟⎠ . (6.24)

As both the external, centre-of-mass, and relational position and momentum
operators obey the canonical commutation relations, it follows that M2 is a
symplectic transformation, i.e. it preserves the symplectic form M2�MT

2 = �.
Since M2 is symplectic, the associated transformation preserves the Gaussianity
of the state, that is, if a state is Gaussian in the external partition, it will also be
Gaussian in the centre-of-mass and relational partition.

The relational state ρR given in Eq. (6.13) is a Gaussian state whose covariance
matrix V2|1 is obtained by deleting the first and second rows and columns of VCMR .
Taking the most general form of V1 and V2 yields

V2|1 = 1

μ1μ2

(
μ2f

−
1 + μ1f

−
2 −μ2m̃2g1 + μ1m̃1g2

−μ2m̃2g1 + μ1m̃1g2 μ2m̃
2
2f
+
1 + μ1m̃

2
1f
+
2

)
, (6.25)

where

f±i := cosh 2ri ± cos 2θi sinh 2ri,

gi := sin 2θi sinh 2ri,

and m̃i := mi/(m1 +m2).

Entanglement Between the Centre-of-Mass and Relational Degrees of Freedom
As a measure of entanglement we will employ the logarithmic negativity [34]

EN (ρ) := log
∥∥ρ�A

∥∥
1 , (6.26)

where �A is the partial transpose and ‖·‖1 denotes the trace norm, with log(·)
denoting the natural logarithm. The logarithmic negativity is a measure of the failure
of the partial transpose of a quantum state to be a valid quantum state and is a faithful
measure of entanglement for 1×N mode Gaussian states [2].

For Gaussian states the logarithmic negativity is given by

EN := −
∑
k

log ṽk ∀ ṽk < 1, (6.27)

where {ṽk} is the symplectic spectrum of the partially transposed covariance matrix
Ṽ, i.e. the eigenspectrum of |i�Ṽ|. The partial transpose of a covariance matrix is

Ṽ = θ1|2Vθ1|2, (6.28)



6.2 Gaussian Quantum Reference Frames 109

where θ1|2 = diag(1, 1, 1,−1).
We will use the logarithmic negativity to quantify the entanglement between the

centre-of-mass and relational degrees of freedom in VCMR = M2VEMT
2 for VE =

V1⊕V2, which corresponds to the two particles being in a factorized state ρ1⊗ρ2 in
the external partition. V1 and V2 will necessarily be of the form given in Eq. (6.23).

Plots of the logarithmic negativity of the state associated with VCMR for different
choices of V1 and V2 are given in Figs. 6.1 (identical state parameters), 6.2 (differing
purity), and 6.3 (differing squeezing). In Figs. 6.1, 6.2, and 6.3 the dashed red line
indicates where the masses of both particles are equal. Several trends emerge from
examining these figures.

We first note that equal-mass systems suppress entanglement between the centre-
of-mass and relational degrees of freedom. When particles in the external partition
are prepared such that they have identical covariance matrices we find vanishing
entanglement in the equal-mass case, regardless of the amount of squeezing and
rotation. This occurs for both pure and mixed states as illustrated in Figs. 6.1
and 6.2, respectively. As one of the masses gets larger, centre-of-mass and relational
entanglement increases for any fixed value of the squeezing parameter r .

Decreasing the purity of the states of the particles in the external partition, shown
in Fig. 6.2, indicates the same trends as for the pure case shown in Fig. 6.1. The
main effects of decreased purity are to decrease the overall entanglement between
the centre-of-mass and relational degrees of freedom and to widen the range of mass
ratios for which this entanglement vanishes.

From Figs. 6.1, 6.2, and 6.3 we can observe the effect of phase rotation,
corresponding to squeezing along a rotated axis in phase space. For a phase rotation
corresponding to θ = θ1 = θ2 = 0, we find that entanglement between the centre-
of-mass and relational degrees of freedom is insensitive to the amount of squeezing.
As θ increases we see that squeezing affects this entanglement, particularly as the
ratio of the masses increasingly departs from unity. Not surprisingly, entanglement
is greater for the pure case, shown in Fig. 6.1, than for the mixed case, shown in
Fig. 6.2.

Asymmetric squeezing, r2 = αr1 where α ∈ R+, illustrated in Fig. 6.3 modifies
this situation. When there is no squeezing, r1 = r2 = 0, entanglement between
the centre-of-mass and relational degrees of freedom vanishes when the masses of
the two particles are equal. However, as r1 departs from zero the ratio of masses,
m1/(m1 + m2), at which this entanglement vanishes increases as illustrated in
Fig. 6.3a. This trend is less pronounced as α approaches unity, which is illustrated
in Fig. 6.3b. Again, we see that phase rotation plays a significant role; Fig. 6.3c, d
demonstrate that if the squeezing of the particles is different and along a rotated
axis, entanglement between the centre-of-mass and relational degrees of freedom
may not vanish for any mass ratio m1/(m1 +m2).

In Figs. 6.1, 6.2, and 6.3 we have plotted the logarithmic negativity as a measure
of the entanglement between the centre-of-mass and relational degrees of freedom
for a wide variety of separable states in the external partition. The more entangled
these degrees of freedom are, the more mixed the reduced state ρR of the relational
degrees of freedom will be. The practical consequence of this is that if one wishes to
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Fig. 6.1 The logarithmic negativity, as a measure of the entanglement between the centre-of-mass
and relational degrees of freedom, of the state associated with VCMR , when V1 = V2 and both
ρ1 and ρ2 are pure, i.e. det V1 = det V2 = 1, is plotted as a function of the squeezing parameter
r = r1 = r2 and the ratio of masses m1/(m1 +m2) for different phase rotations θ = θ1 = θ2: (a)
θ = 0, (b) θ = π/32, (c) θ = π/8, and (d) θ = π/4

encode quantum information in the relational degrees of freedom of two Gaussian
states, perhaps to communicate this information to another party who does not have
access to their external reference frame, then the purity and amount and direction of
squeezing should be chosen in accordance with Figs. 6.1, 6.2, and 6.3 as to minimize
the entanglement between the centre-of-mass and relational degrees of freedom.
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Fig. 6.2 The logarithmic negativity is plotted as a measure of the entanglement between the
centre-of-mass and relational degrees of freedom of the state associated with VCMR , with r =
r1 = r2 and θ = θ1 = θ2, for different purities μ1 of particle 1 and phase rotations θ ; the state
of particle 2 is pure, μ2 = 1. In (a, b) θ = 0 and (c, d) θ = π/4. In (a, c) μ1 = 0.6 and (b, d)
μ = 0.2. Plots for θ = 0 and μ1 = 1 and for θ = π/4 and μ1 = 1 are shown in Fig. 6.1a and d,
respectively

6.2.3 Purity of the Relational State

As considered above, particles 1 and 2 are prepared in a pure factorized state in the
external partition, and since the transformation to the centre-of-mass and relational
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Fig. 6.3 The logarithmic negativity of the state associated with VCMR is plotted as a measure of
the entanglement between the centre-of-mass and relational degrees of freedom, with det V1 =
det V2 = 1 and r2 = αr1, for different phase rotations θ = θ1 = θ2 and values of α. In (a, b) θ = 0
and (c, d) θ = π/4. In (a, c) α = 0 and (b, d) α = 0.5. Plots for θ = 0 and α = 1 and for θ = π/4
and α = 1 are shown in Fig. 6.1a and d, respectively

partition is a unitary operation, the purity of the reduced state on the relational
degrees of freedom ρR quantifies how much information about the external frame
has been lost in tracing out the centre-of-mass degrees of freedom. We explicitly
compute the purity of the relational state ρR given the joint state in the external
partition is pure and factorized and both particles 1 and 2 are in Gaussian states.
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The covariance matrices considered in Sect. 6.2.2 were of the form VE =
V1 ⊕ V2, where both V1 and V2 were given by Eq. (6.23). The purity of VCMR =
M2VEMT

2 is given by

μCMR = 1√
det VCMR

= μ1μ2, (6.29)

where μ1 and μ2 are the purities associated with V1 and V2, respectively.
The purity of the relational state defined by V2|1 in Eq. (6.25), that is, the state

obtained from VCMR by taking the partial trace over the centre-of-mass degrees of
freedom, is

μ2|1 = 1√
det V2|1

= μ1μ2

[
μ2

2m̃
2
2f
−
1 f+1 + μ1μ2

(
m̃2

1f
−
1 f+2 + m̃2

2f
+
1 f−2

)
+ μ2

1m̃
2
1f
−
2 f+2

−μ2
2m̃

2
2g

2
1 + 2μ1μ2m̃1m̃2g1g2 − μ2

1m̃
2
1g

2
2

]−1/2
, (6.30)

where we have introduced the notation m̃i := mi/(m1 +m2).
If VCMR is pure, which corresponds to both V1 and V2 being pure, then μCMR =

1 and μ2|1 is a genuine measure of entanglement between the centre-of-mass and
relational degrees of freedom. In this case, μ−2

2|1 simplifies to

μ−2
2|1 = (m̃2 − m̃1)

[
sinh(2r1) cosh(2r2) cos(2θ1)− sinh(2r2) cosh(2r1) cos(2θ2)

]

− sinh(2r1) sinh(2r2)
[
2m̃1m̃2 cos[2(θ1 + θ2)] + cos(2θ1) cos(2θ2)

]

+ (2m̃1m̃2 + 1) cosh(2r1) cosh(2r2)+ m̃2
1 + m̃2

2. (6.31)

If the mass of the two particles are equal m1 = m2, μ−2
2|1 further simplifies to

μ−2
2|1 =

1

4

[
− 2 sinh(2r1) sinh(2r2) cos[2(θ1 − θ2)]

+ cosh[2(r1 − r2)] + cosh[2(r1 + r2)] + 2
]
. (6.32)

From Eq. (6.32), we observe that when the masses of the two particles are identical
m1 = m2, and each particle is squeezed by the same amount r1 = r2 and in the same
direction in phase space θ1 = θ2, the reduced state associated with the covariance
matrix V2|1 is pure, i.e. μ2|1 = 1, which corresponds to vanishing entanglement
between the centre-of-mass and relational degrees of freedom. This agrees with the
plots of the logarithmic negativity in Fig. 6.1.
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For the case when m1 �= m2, r1 = r2 = r and θ1 = θ2 = θ , corresponding to
Fig. 6.1, μ−2

2|1 becomes

μ−2
2|1 =2

m2
1 +m2

2

(m1 +m2)
2 + sin2(2θ)

[
m2

1 +m2
2

(m1 +m2)
2 sinh2(2r)− 2

m1m2

(m1 +m2)
2

]
.

(6.33)

When the mass of either particle becomes infinite we find

μ−2
2|1 =2+ sinh2(2r) cos2(2θ). (6.34)

6.2.4 The Three-Particle Case

We now consider a similar analysis for a system of three particles with masses m1,
m2, and m3. When transforming a fully factorized state in the external partition
H = H1 ⊗ H2 ⊗ H3 to the centre-of-mass and relational partition H = HCM ⊗
HR , there will again be entanglement generated between the centre-of-mass and
relational degrees of freedom. In addition, there will be entanglement generated
among the relational degrees of freedom, a new feature not possible for the two-
particle system considered above.

The centre-of-mass position and momentum operators, along with the relative
position and momentum operators, are again defined via Eq. (6.5). The transformed
covariance matrix is given by VCMR =M3VEMT

3 , where

M3 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1
M

0 m2
M

0 m3
M

0
0 1 0 1 0 1
−1 0 1 0 0 0
0 −m2

M
0 1− m2

M
0 −m2

M

−1 0 0 0 1 0
0 −m3

M
0 −m3

M
0 1− m3

M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (6.35)

The relational state defined by V23|1 of particles 2 and 3 as described by particle 1
is obtained by deleting the first and second rows and columns of VCMR . We observe
that in the limit when m3 vanishes and the columns and rows of M3 associated with
particle 3 are deleted (the last two rows and columns), M2 as defined in Eq. (6.24)
is recovered.

We assume the state of the three-particle system in the external partition is a
fully factorized Gaussian state with the covariance matrix VE = V1⊕V2⊕V3. For
simplicity we restrict ourselves to the case when V1 = V2 = V3 and det VE = 1,
in other words, a pure state with each of the three particles identically squeezed in
the same direction.
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Fig. 6.4 As a measure of the entanglement between the centre-of-mass and relational degrees of
freedom in the three-particle case, the logarithmic negativity of the state associated with VCMR is
plotted for different equal phase rotations θ1 = θ2 = θ3 = θ with det V1 = det V2 = det V3 =
1. In (a, b) the logarithmic negativity is plotted for the case when m2 = m3 as a function of
m1/(m1 +m2 +m3) and equal squeezing parameter r1 = r2 = r3 = r , with θ = 0 and θ = π/4,
respectively. In (c, d) the logarithmic negativity is plotted as a function of the two mass ratios
m1/(m1+m2+m3) and m2/(m1+m2+m3) for θ = 0 and θ = π/4, respectively, with the equal
squeezing parameter fixed at r = 0.7

In Fig. 6.4 the logarithmic negativity as a measure of entanglement between the
centre-of-mass and relational degrees of freedom in VCMR is plotted for different
choices of VE . In Fig. 6.5 the logarithmic negativity between the relational degrees
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Fig. 6.5 The logarithmic negativity of the relative state of particles 2 and 3 defined by V23|1 is
plotted, characterizing the entanglement among the relational degrees of freedom, for different
equal phase rotations θ1 = θ2 = θ3 = θ with det V1 = det V2 = det V3 = 1. In (a, b) the
logarithmic negativity is plotted for the case m2 = m3 as a function of the ratio m1/(m1+m2+m3)

and equal squeezing parameter r1 = r2 = r3 = r for θ = 0 and θ = π/4, respectively. In
(c, d) logarithmic negativity is plotted as a function of the mass ratios m1/(m1 + m2 + m3) and
m2/(m1 +m2 +m3) for equal squeezing parameter r = 0.7 and θ = 0 and θ = π/4, respectively

of freedom in V23|1 is plotted for different choices of VE . In both figures, the dashed
red line and red point indicate where the masses of all particles are equal.
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In the three-particle case, entanglement between the centre-of-mass and rela-
tional degrees of freedom behaves similar to the two-particle case. However,
entanglement among the relational degrees of freedom—in the case at hand,
the entanglement between particles 2 and 3 as described by particle 1—exhibits
strikingly different behaviour; this is illustrated in Fig. 6.5. Such entanglement is
maximized in the equal-mass case, shown in Fig. 6.5b, d, provided there is some
phase rotation. In the absence of phase rotation, this effect vanishes. For all values of
the (equal) phase rotation parameter, we observe that when the mass of the reference
particle m1 becomes infinite, the entanglement between particles 2 and 3 vanishes.
This is as expected, since this limit corresponds to particle 1 behaving as a classical
reference frame with a large mass. Indeed, we noted that in the limit m1 → ∞,
the 4 × 4 lower-right submatrix of M3 becomes the identity matrix, and the only
effect of the change of coordinates is that of redefining the origin in space for the
coordinates of the second and third particle.

6.3 Summary

In this chapter we have highlighted issues involving quantum reference frames
associated with noncompact groups. We began in Sect. 6.1.1 by introducing the
usually employed G-twirl as a relational description between quantum systems
and demonstrated how it leads to non-normalizable states when averaging states
over noncompact groups. In Sect. 6.1.2 we demonstrated that a lack of reference
frame associated with the translation group and the group of Galilean boosts leads
to a superselection rule on the respective momentum and position of the centre-
of-mass of a multiparticle system. Further, we saw how the G-twirl over these
groups leads to the appearance of the reduced state on the relational degrees
of freedom previously considered by Angelo et al. [11]. We then examined the
consequences of this relational description in Sect. 6.2 by studying the entanglement
that emerges between the centre-of-mass degrees of freedom and the relational
degrees of freedom, as well as the entanglement among the relational degrees of
freedom, for a system of particles when moving from a description of the quantum
system entirely with respect to an external frame, to a description in which only the
centre-of-mass is specified with respect to an external frame and all other degrees
of freedom are relational.

Two main observations emerged from studying the reduced state ρR on the
relational degrees of freedom, introduced in Eq. (6.13), for systems of two and
three particles. First, for fully separable Gaussian states in the external partition
with identical second moments, entanglement between the centre-of-mass degrees
of freedom and relational degrees of freedom is minimized when the masses of
the particles are the same. Second, again for fully separable Gaussian states in the
external partition with identical second moments, in the limit when the mass of
the reference particle (the particle for which the relational degrees of freedom are
defined with respect to) becomes infinite, the entanglement among the relational
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degrees of freedom vanishes. This second observation suggests a meaningful way
to interpret the external reference frame, with respect to which we usually describe
a quantum state, as the limit of a physical system, say a particle, in which its mass is
taken to infinity [6]. The consequences of this second observation will be explored
in future work.

It may be possible to gain further physical intuition into the behaviour of the
informational properties of ρR by comparing ρR with the behaviour of nonclassical
states of light passing through a beam splitter, as this scenario has been well studied
in the field of quantum optics [21, 32] and the formalism of Gaussian quantum
information was developed with this situation in mind [1, 35].

The primary motivation for examining quantum reference frames associated with
noncompact groups is to apply the quantum reference frame formalism to relativistic
systems, in which the group associated with changes of a reference frame is the
Poincaré group. We note that the approach taken in Sect. 6.1.2 was to introduce
the relative and centre-of-mass partition of the Hilbert space and then show that the
relative degrees of freedom form a decoherence-free subsystem, whereas the centre-
of-mass degree of freedom forms a decoherence-full subsystem; see Eq. (6.12). This
approach may not be possible for the Poincaré group as the usually defined centre-
of-mass is not covariant [4]. In this case, the decoherence-free and decoherence-full
subspaces will need to be identified from the structure of the Poincaré group [18].

It will also be interesting to explore whether it is possible to construct a relational
quantum theory, similar to what was done in Ref. [27], for the Galilean group using
the relational description in Eq. (6.13) and examine how the usual “nonrelational”
theory emerges.
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14. A. Chȩcińska, A. Dragan, Communication between general-relativistic observers without a
shared reference frame. Phys. Rev. A 92, 012321 (2015)

15. M.R. Dowling, S.D. Bartlett, T. Rudolph, R.W. Spekkens, Observing a coherent superposition
of an atom and a molecule. Phys. Rev. A 74, 052113 (2006)

16. D. Giulini, States, symmetries and superselection, in Decoherence: Theoretical, Experimental,
and Conceptual Problems, ed. by P. Blanchard, E. Joos, D. Giulini, C. Kiefer, I.-O. Stamatescu
(Springer, Berlin, 2000), pp. 87–100
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Chapter 7
Communication Without a Shared
Reference Frame

Most quantum communication protocols assume that the parties communicating
share a classical background reference frame. For example, suppose Alice wishes
to communicate to Bob the state of a qubit using a teleportation protocol [9]. Alice
begins by having the qubit she wishes to communicate to Bob interact with one
half of an entangled pair of qubits shared by her and Bob. Alice then measures
the two qubits in her possession and picks up the phone and informs Bob of the
measurement result. Bob uses this information to apply an appropriate gate to his
half of the entangled pair to recover the state Alice wished to send to him.

The success of this protocol depends on Alice’s ability to classically communi-
cate to Bob which gates he should apply to his half of the entangled state. This can
only be done if Alice and Bob share a reference frame. As an example, suppose
Alice informs Bob that he needs to apply the Pauli z operator to the qubit in his
possession. If Bob is ignorant of the orientation of his laboratory with respect to
Alice’s, he does not know in which direction to orientate the magnetic field in
his Stern-Gerlach apparatus to implement the Pauli z operator to recover the state
sent by Alice. In this case the teleportation protocol is unable to be carried out
perfectly [5, 15, 16].

This motivates the study of quantum communication without a shared reference
frame [2]. One way Alice can communicate to Bob, despite not sharing a reference
frame with him, is to encode information into degrees of freedom that are invariant
under a change of Alice’s reference frame. Without knowing his relation to Alice’s
reference frame, Bob is able to extract both classical and quantum information
encoded in these degrees of freedom [1]. However, in practice such communication
schemes may be challenging to implement since they require highly entangled states
of many qubits.

Another possibility for Alice and Bob to communicate without a shared reference
frame is for Alice to send Bob a quantum system ρR to serve as a token of her
reference frame, together with the state ρS she wishes to communicate to him.
Since Bob does not know the relation between his reference frame and Alice’s,
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with respect to his reference frame he will see the joint state ρR ⊗ ρS averaged
over all possible orientations of his laboratory with respect to Alice’s; this averaging
operation is referred to as the G-twirl and the averaged state denoted by G[ρR⊗ρS].
Bob can apply a recovery operation to this G-twirled state by measuring the
reference token and applying an appropriate correction to the system Alice wishes
to send to him, allowing him to recover a state ρ′S that is close to ρS . This recovery
operation was first constructed by Bartlett et al. [3], and its success was found
to depend on the size of the reference token, which is necessarily bounded if the
reference token is described by a finite dimensional Hilbert space.

However, this communication protocol is based on Bob assigning the G-twirled
state G[ρR ⊗ ρS] to the system and reference token, and the G-twirl does not
yield normalizable states when the group of reference frames being averaged over
in noncompact [12]. This begs the question: Can an analogous communication
protocol involving a reference token sent by Alice and a recovery operation
implemented by Bob be constructed given that changes of their reference frames
form a noncompact group? Furthermore, if the Hilbert space of the reference token
is infinite dimensional, for example, HR � L2(R), what physical aspect of the
reference token acts as its size?

The purpose of this chapter is to examine these questions. Considerations of
noncompact groups within the theory of quantum reference frames is important
if one hopes to apply the theory to the physically relevant Galilean and Poincaré
groups, which are both noncompact.

We begin in Sect. 7.1 by describing the encoding and recovery operations
introduced by Bartlett et al. [3]. In Sect. 7.2 we introduce a G-twirl over a compact
subset of a noncompact group and a complementary recovery operation such that in
the limit when this G-twirl becomes an average over the entire noncompact group,
the composition of the recovery operation with this G-twirl results in properly
normalized states. We then apply this construction in Sect. 7.3 to the case when
Alice and Bob do not share a reference frame associated with the one-dimensional
translation group, which is relevant for parties communicating without a shared
positional reference frame. In this case, we identify the inverse of the width in
position space of the reference token’s state as the size of the reference token, and
demonstrate that in the limit when this width goes to zero Alice and Bob are able to
communicate perfectly without a shared reference frame. We conclude in Sect. 7.4
with a summary of the results presented in this chapter.

7.1 Communication Without a Shared Classical Reference
Frame

Consider two parties, Alice and Bob, each employing their own classical reference
frame to describe the state of a single quantum system associated with the Hilbert
space HS . Suppose that this system transforms via a unitary representation of the
group G when changing the reference frame used to describe the system; for the
time being we will assume G is a compact Lie group.
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Let g ∈ G label the group element which describes the transformation from
Alice’s to Bob’s reference frame. If Alice prepares the system in the state ρS ∈
S(HS) with respect to her reference frame, where S(HS) is the space of states on
HS and g is completely unknown to Bob, then the state with respect to his reference
frame will be given by a uniform average over all possible g ∈ G; that is, by the
G-twirl

G[ρS] :=
∫
G

dg US(g) ρS US(g)
†, (7.1)

where dg denotes the Haar measure associated with G and US(g) ∈ U(HS) is the
unitary representation of the group element g ∈ G on HS , with U(HS) denoting the
space of unitary operators on HS . If instead Bob has some partial information about
the relation between his reference frame and Alice’s, the uniform average over all
possible g ∈ G in Eq. (7.1) would be replaced with a weighted average encoding
Bob’s partial information.

In general, the G-twirl results in decoherence, not from the system interacting
with an environment and information being lost to the environment, but from Bob’s
lack of knowledge about the relationship between his reference frame and Alice’s.
To combat this decoherence, Alice may prepare another quantum system, described
by the Hilbert space HR , to serve as a token of her reference frame (a good
representative of her reference frame). Suppose Alice prepares the token in the state
|e〉 ∈ HR , then the reference token and system relative to Bob’s frame will be given
by the encoding operation

E[ρS] :=G
[ |e〉〈e| ⊗ ρS

]

=
∫
G

dg UR(g)[|e〉〈e|]⊗ US(g)[ρS] , (7.2)

where Ui (g)[ρ] := Ui(g) ρ Ui(g)
† denotes the adjoint representation of the action

of the group element g ∈ G on ρ ∈ S (Hi ) for i ∈ {R, S}.
Bob’s task is now to best recover the state of the system ρS given the encoded

state E[ρS]. In other words, he must construct a recovery operation

R : S(HR ⊗HS)→ S(HS), (7.3)

that when applied to E[ρS] results in a state ρ′S ∈ S(HS) that is as close as possible
to ρS . A recovery operation R was constructed by Bartlett et al. [3] with such
properties, and its action on the encoded state E[ρS] yields

ρ′S := R ◦ E[ρS] =
∫
G

dg p(g)US(g)[ρS] , (7.4)



124 7 Communication Without a Shared Reference Frame

ρS

|e〉〈e|

E

G R
ρ′
S

Fig. 7.1 The communication channel R ◦ E . Alice prepares a state ρS she wishes to communicate
to Bob along with the state |e〉〈e| as a token of her reference frame. As Bob does not know the
relation between his reference frame and Alice’s, he sees the joint state of the reference token and
system as the encoded state E[ρS ] = G[ |e〉〈e| ⊗ ρS

]
. Bob then applies the recovery operation to

the encoded state and recovers the state ρ′S = R ◦ E[ρS ]

where p(g) ∝ |〈e|UR(g)|e〉|2 with UR(g) ∈ U(HR) being the unitary representa-
tion of g ∈ G on HR . We will explicitly construct this recovery operation in the
next section for the case when G is noncompact (Fig. 7.1).

7.2 A Recovery Operation for Noncompact Groups

The action of the G-twirl over a noncompact group on a state results is a non-
normalizable density matrix [12], and therefore it is not clear whether the encoding
operation E or the recovery operation R discussed above are applicable to reference
frames associated with noncompact groups. We now demonstrate that despite this
fact, the composition of an encoding operation associated with a noncompact group
with a suitably defined recovery operation results in a properly normalized state.

The approach we will take is to define a G-twirl over a compact subset of the
noncompact group associated with the reference frame, which corresponds to Bob
having partial information that the relation between his reference frame and Alice’s
is described by g ∈ [−τ, τ ] ⊂ G. This finite G-twirl will be used in an encoding
operation analogous to Eq. (7.2). We will then construct a complementary recovery
operation, compose it with this encoding operation (similar to Eq. (7.4)), and finally
take a limit in which the finite G-twirl corresponds to twirling over the entire
noncompact group. We will show that in this limit the recovered state is properly
normalized.

7.2.1 The Encoding Map

Consider all possible transformations of Alice’s and Bob’s classical reference
frames to form a strongly continuous one-parameter noncompact Lie group G.
Suppose that the unitary representation of a group element g ∈ G on the Hilbert
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space HR describing the reference token is UR(g) ∈ U(HR). By Stone’s theo-
rem [13], UR(g) = eigAR is generated by a self-adjoint operator AR , the spectrum
of which we denote by σ(AR) and assume to be continuous.1 For each element of
the spectrum f (aR) ∈ σ(AR) there corresponds an eigenket |aR〉 such that

AR |aR〉 = f (aR) |aR〉 , (7.5)

with eigenvalue f (aR) ∈ R. Since σ(AR) is continuous and AR is self-adjoint,
these eigenkets are normalized with the Dirac delta function

〈
aR|a′R

〉 = δ
(
aR − a′R

)
. (7.6)

From the above normalization condition we see that |aR〉 �∈ HR , as these eigenkets
are not square integrable and therefore do not represent physical states.2

Our first step is to construct a well-defined encoding operation analogous to
Eq. (7.2). To do so, we suppose the state of Alice’s reference token |e〉 ∈ HR ,
expressed in the basis furnished by the eigenkets of AR , is

|e〉 :=
∫

daR ψR(aR) |aR〉 , (7.7)

where ψR(aR) := 〈aR|e〉. Next, let us introduce the set of states

{ |e(g)〉 := UR(g) |e〉
∣∣∀g ∈ G

}
, (7.8)

where each |e(g)〉 corresponds to a different orientation of Alice’s reference frame.
The state of the reference token |e〉 should be chosen such that each |e(g)〉 defined
in Eq. (7.8) is distinct, that is, the state of the reference token should not be invariant
with respect to G. Furthermore, for the states |e(g)〉 to imitate a classical reference
frame, they must be orthogonal so as they are perfectly distinguishable.

Now suppose Alice prepares her reference token in the state ρR ∈ S(HR) and
wishes to send Bob the state ρS ∈ S(HS) of a system associated with the Hilbert
space HS . If Bob knows the relation between his reference frame and Alice’s is
given by a group element g ∈ [−τ, τ ] ⊂ G, but within this interval he is completely

1This is true of the group generated by either the position or momentum operator on L2(R). We
note that the following construction does not rely on σ(AR) being continuous.
2More precisely, when dealing with operators with a continuous spectrum the theory is defined on
a rigged Hilbert space [6]

� ⊂ HR ⊂ �′,

where � is a proper subset dense in HR and �′ is the dual of �, defined through the inner product
on HR . In our case, � is the Schwarz space of smooth rapidly decreasing functions on R and �′ is
the space of tempered distributions on R. The eigenkets |aR〉 are in �′.
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ignorant of which group element corresponds to this relation, he will describe the
joint state of the reference token and system by the output of the encoding operation

Eτ : S(HS)→ S(HR ⊗HS)

ρS �→ Eτ [ρS] := Gτ
[
ρR ⊗ ρS

]
, (7.9)

where the map Gτ is a twirl over the finite interval [−τ, τ ] ⊂ G,

Gτ [ρR ⊗ ρS] := 1

2τ

∫ τ

−τ
dg UR(g)[ρR]⊗ US(g)[ρS] , (7.10)

where dg is the Haar measure associated with G.

7.2.2 The Recovery Operation

As demonstrated by Bartlett et al. [3], Bob may perform a recovery operation R by
first making a measurement of the reference token, followed by a reorientation of
the system conditioned on the outcome of the measurement, and then discarding
both the reference token and measurement result. We follow this procedure in
constructing the recovery operation to be applied to the encoded state Eτ (ρS).

Bob will make a measurement R of the reference token described by the POVM
elements

R := {dg E(g), ∀g ∈ [−τ, τ ] ⊂ G
} ∪ {Eτ

}
, (7.11)

where

Eτ := IR −
∫ τ

−τ
dg E(g), (7.12)

dg E(g) is the POVM element associated with outcome g ∈ G, and IR is the identity
operator on HR . We assume3 that these POVM elements satisfy the covariance
relation

UR(g
′)[E(g)] = E(g + g′) ∀g ∈ G. (7.13)

3To the best of the author’s knowledge the question of whether such a measurement exists for
any G is an open problem, as suggested by the remarks in Sec. III.4.4 of Ref. [4]. However, it is
suggested in this reference that it seems plausible that such a measurement can be constructed,
although there does not seem to be an easy general procedure for its construction.
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If the outcome of the measurement of R is g ∈ [−τ, τ ], associated with
the POVM element dg E(g), then Bob will reorient the system state ρS by
implementing the unitary map US(g

−1), which corresponds to the transformation
of the reference token by an amount indicated by the measurement result (first term
in Eq. (7.14)). If the outcome of the measurement is associated with the operator
Eτ , Bob will do nothing (second term in Eq. (7.14)). After this measurement and
reorientation, Bob will discard (trace out) the reference token and measurement
result. This entire procedure will constitute the recovery operation Rτ .

The action of the recovery operation Rτ on the encoded state Eτ [ρS] is given by

ρ′S(τ ) = Rτ ◦ Eτ [ρS]

= 1

2τ

∫ τ

−τ
dg′
∫ τ

−τ
dg tr

(
E
(
g′
)
UR(g) [ρR]

)
US(g

′−1) ◦ US(g) [ρS]

+ 1

2τ

∫ τ

−τ
dg tr

(
Eτ UR(g) [ρR]

)
US(g) [ρS] . (7.14)

7.2.3 Taking the Limit τ → ∞

The limit of Eq. (7.14) in which τ becomes infinite corresponds to the scenario in
which Bob knows nothing about the orientation of his reference frame with respect
to Alice’s—the G-twirl appearing in the encoding map in Eq. (7.9) is an average
over the entire group G.

As is clear from Eq. (7.12), in the limit τ → ∞ the operator Eτ vanishes, and
thus the second term in Eq. (7.14) goes to zero. Taking this into account, the τ →∞
limit of Eq. (7.14) is

ρ′S = lim
τ→∞

1

2τ

∫ τ

−τ
dg′
∫ τ

−τ
dg tr

(
E(g′ − g)ρR

)
US(g − g′)[ρS] , (7.15)

where we have used the covariance property of the POVM elements expressed in
Eq. (7.13). Changing the integration variables to u := g′ − g and v := g′, the
recovered state becomes

ρ′S = lim
τ→∞

1

2τ

∫ τ

−τ
dv

∫ v+τ

v−τ
du tr

(
E(u)ρR

)
U†
S (u)[ρS] . (7.16)

Denoting the antiderivative of the above integrand as

F(x) :=
∫ x

0
du tr

(
E(u)ρR

)
U†
S (u)[ρS] , (7.17)

equation (7.16) takes the form
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ρ′S = lim
τ→∞

1

2τ

∫ τ

−τ
dv
(
F(v + τ)− F(v − τ)

)
. (7.18)

Making the substitution h := τ + v and h := τ − v in the first and second terms,
respectively, the recovered state simplifies to

ρ′S = lim
τ→∞

1

2τ

∫ 2τ

0
dh
(
F(h)− F(−h)). (7.19)

Taking the limit by applying l’Hôpital’s rule [11] yields

ρ′S =
1

2
lim
τ→∞

∂

∂τ

∫ 2τ

0
dh
(
F(h)− F(−h))

= lim
τ→∞

(
F(τ)− F(−τ))

=
∫
G

dg tr
(
E(g)ρR

)
US(g)[ρS] , (7.20)

where the integration is carried out over the entire group G.
This brings us to our main result: Even though the action of the G-twirl over

a noncompact group yields non-normalizable states [12], the composition of the
encoding operation, which makes use of the G-twirl, with the recovery operation
applied to ρS results in a properly normalized state in S(HS). Explicitly

ρ′S = lim
τ→∞Rτ ◦ Eτ [ρS] =

∫
G

dg p(g)US(g)[ρS] ∈ S(HS), (7.21)

where p(g) := tr
(
E(g)ρR

)
is a normalized probability distribution on G.

Equation (7.21) is identical to the expression for the composition of the recovery
and encoding map defined for compact groups given in Eq. (7.4). From Eq. (7.21)
we see that if p(g) is highly peaked around the identity group element, then the
only unitary that will contribute significantly is the identity operator, and the state
recovered by Bob will be close to the state sent by Alice, ρ′S ≈ ρS . Thus, the success
of the recovery operation, and consequently the quality of the reference token, can
be quantified in terms of the width of p(g), analogous to the compact case [3].

By expressing ρS in the basis furnished by the eigenkets of the generator AS of
the group G, we find the recovered state to be

ρ′S =
∫
G

dg p(g)

∫
daSda

′
S ρS(aS, a

′
S)e

iASg |aS〉
〈
a′S
∣∣ e−iASg

=
∫

daSda
′
S

[∫
G

dg p(g) eig(aS−a′S)
]
ρS(aS, a

′
S) |aS〉

〈
a′S
∣∣

=
∫

daSda
′
S p̃(aS − a′S)ρS(aS, a′S) |aS〉

〈
a′S
∣∣ , (7.22)
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where in the last equality we have defined the Fourier transform of p(g),

p̃(aS − a′S) :=
∫
G

dg p(g) eig(aS−a′S). (7.23)

From the definition of the characteristic function p̃(aS − a′S) above, we see that if
aS = a′S , then p̃(aS − a′S) = 1, and consequently the diagonal elements of ρS are
unaffected by the action of the communication channel limτ→∞Rτ ◦ Eτ . On the
other hand, since the characteristic function is bounded,

∣∣p̃(aS − a′S)
∣∣ ≤ 1, when

aS �= a′S the off-diagonal elements of ρ′S are equal to those of ρS multiplied by a
factor whose magnitude is less than or equal to unity. From this observation we see
that the decoherence induced by limτ→∞Rτ ◦ Eτ occurs in the basis furnished by
the eigenkets associated with the generator AS of the group G.

To quantify the success of the recovery operation—how close the recovered state
ρ′S is to the initial state ρS—we will make use of the fidelity F(ρ′S, ρS) between the
recovered state ρ′S and the state ρS = |ψS〉〈ψS | ∈ S(HR) that Alice sent, which we
will take to be pure

|ψS〉 =
∫

daS ψS(aS) |aS〉 , (7.24)

where ψS(aS) := 〈aS |e〉. The fidelity F(ρ′S, ρS) is then given by

F(ρ′S, ρS) :=
〈
ψS |ρ′S |ψS

〉

=
∫
G

dg p(g) |〈ψS |US(g)|ψS〉|2

=
∫

daSda
′
S p̃(aS − a′S) |ψS(aS)|2

∣∣ψS(a
′
S)
∣∣2 . (7.25)

7.3 Reference Frames Associated with the Translation Group

We now examine the recovered state ρ′S = limτ→∞Rτ ◦ Eτ [ρS] when the relevant
reference frame is associated with the one-dimensional translation group.

Consider Alice and Bob being completely ignorant of the relation between
the spatial origins of their laboratories, i.e. the relation between their positional
reference frames. The group formed by all possible changes of Alice’s reference
frame is the one-dimensional translation group T1. The unitary representation of
the group element g ∈ T1 on the system is US(g) ∈ US(HS) and on the reference
token is UR(g) ∈ UR(HR). These representations are generated by their respective
momentum operators AS = PS and AR = PR .

Suppose as a token of Alice’s reference frame she prepares the state |eσ 〉 ∈ HR �
L2(R), which we take to be a Gaussian state
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|eσ 〉 = 1

π1/4
√
σ

∫
dxR e−x2

R/2σ 2 |xR〉 , (7.26)

where we have expressed |eσ 〉 in the basis furnished by the eigenkets |xR〉 of the
position operator XR on HR and σ > 0 is the spread of this state with respect to this
basis. Note that the different orientations of this token state |eσ (g)〉 := U(g) |eσ 〉
are orthogonal in the limit that σ vanishes, limσ→0

〈
eσ (g)|eσ (g′)

〉 = δg,g′ , imitating
a classical reference frame as discussed in the proceeding section. In this limit
token states corresponding to different positional reference frames are completely
distinguishable from each other.

We must now construct the recovery measurement R for which the associated set
of POVM elements satisfy the covariance relation in Eq. (7.13) with respect to the
translation group T1. One such set is given by the PVM elements associated with the
position operator XR , namely, E(x) := |xR〉〈xR| for all x ∈ R � T1, where |xR〉
denotes the eigenket of XR associated with the eigenvalue xR . This follows from the
fact that the position and momentum operators acting on HR satisfy the canonical
commutation relation [XR,PR] = i, which implies that PR generates translations
of the operator XR , or equivalently UR(g) |xR〉 = |xR + g〉. However, there is a
more general set of POVM elements corresponding to unsharp measurements of
the position operator constructed by the convolution of E(x) with some confidence
measure μ,

Eμ(x) :=
∫

dμ(q)E(x + q). (7.27)

Direct substitution of Eμ(x) into Eq. (7.13) shows that indeed these unsharp POVM
elements are covariant with respect to the translation group. In what follows we
consider the family of unsharp POVM elements E

μ
δ (x) defined by choosing a

Gaussian measure parametrized by δ > 0,

E
μ
δ (x) :=

∫
dq

e−q2/δ2

√
πδ

E(x + q). (7.28)

In the limit δ→ 0, we have E
μ
δ (x)→ E(x).

Given that Alice prepared the reference token in the state ρR = |eσ 〉〈eσ | ∈
S(HR), the probability distribution p(g) appearing in Eq. (7.21) is

p(g) := tr
(
E

μ
δ (g)ρR

) = e
− g2

σ2+δ2

√
π
√
σ 2 + δ2

. (7.29)

We note that p(g) is peaked around g = 0 with a width of
√
σ 2 + δ2. From

Eq. (7.21), and the discussion that immediately follows, we see that the parameter√
σ 2 + δ2 determines the quality of the recovery operation: The smaller σ and δ are,
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the more peaked p(g) is around the identity element and the closer Bob’s recovered
state will be to the state sent by Alice.

As a concrete example, suppose Alice wishes to send Bob the state ρS =
|ψS〉〈ψS |, where |ψS〉 ∈ HS � L2(R) is a Gaussian state

|ψS〉 = 1

π1/4
√
�

∫
dxS e

iμpxe−(xS−μx)
2/2�2 |xS〉 , (7.30)

with � the width of the Gaussian state in the position basis |xs〉 for HS , and μx and
μp its average position and momentum, respectively. Using Eq. (7.25), the fidelity
between ρS and the state recovered by Bob ρ′S is

F(ρ′S, ρS) =
�√

�2 + 1
2

(
σ 2 + δ2

) . (7.31)

As might be expected, in the limit where σ and δ vanish the fidelity F(ρ′S, ρS) is
equal to unity and the recovered state is exactly equal to the state Alice wished to
send to Bob, ρ′S = ρS . This limit corresponds different orientations of the reference
token described by Eq. (7.8) being orthogonal, thus imitating a classical reference
frame, and the measurement of the token’s position being carried out perfectly.

From Eq. (7.31) we also observe that states less localized in the position basis
(larger �) are better recovered by Bob, as illustrated in Fig. 7.2 in which the fidelity
is plotted as a function of

√
σ 2 + δ2 for different �. Note that the expression for the

fidelity is independent of μx and μp, implying that for Gaussian states the success of
the recovery operation is independent of where the state is localized in phase space.
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Fig. 7.2 The fidelity F(ρ′S, ρS) between the state sent by Alice ρS and the state recovered by Bob

ρ′S as a function of
√
σ 2 + δ2, where σ is the width of the reference token in position space and

δ quantifies the accuracy of Bob’s measurement of the reference token. It is seen that for a fixed√
σ 2 + δ2, states less localized in the position basis (larger �) are better recovered by Bob
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As a second example, suppose Alice prepares her token in a superposition of two
Gaussian wave packets

|e〉 = 1√
N

(
|ψ(x̄, p̄, σ )〉 + |ψ(−x̄,−p̄, σ )〉

)
∈ HR, (7.32)

where N is an appropriate normalization constant and |ψ(x̄, p̄, σ )〉 denotes the state
of a Gaussian wave packet of width σ in position space with average position and
momentum x̄ and p̄, respectively. As they appear in Eq. (7.32), x̄ and p̄ quantify the
size of the superposition in position and momentum space, respectively. Further,
suppose that Bob is able to make a perfect measurement of the position of the
reference token as described by the POVM elements limδ→0 E

μ
δ (x). And again,

suppose Alice wishes to communicate the Gaussian state given in Eq. (7.30).
Given the above, the fidelity expressed in Eq. (7.25) yields

F(ρ′S, ρS) = β
eβ

2x̄2/σ 2 + e−β2p̄2σ 2

ex̄
2/σ 2 + e−p̄2σ 2 , (7.33)

where β := �/
√
�2 + σ 2/2; note that β ∈ (0, 1) and is equal to Eq. (7.31) when

δ → 0. Further, β takes its maximum (minimum) value when �  σ (� � σ ).
Also observe that the Fidelity in Eq. (7.33) is independent of μx and μp, implying
that the success of the recovery operation is independent of where |ψS〉 is localized
in phase space.

Observe that the Fidelity in Eq. (7.33) is a monotonically decreasing function of
x̄, which implies that Alice should prepare the size of the superposition in position
space to be as small as possible (i.e. small x̄) in order to maximize the fidelity. A
second observation can be made by inspection of Fig. 7.3, which is a plot of both the
maximum fidelity, Fmax := max

[
F(ρ′S, ρS) | x̄, p̄, σ > 0

]
, and the value p̄max/σ

which realizes this maximum as a function of the width �/σ of the state |ψS〉 Alice
wishes to send to Bob; since the fidelity is monotonically decreasing in x̄σ , this
maximum occurs when x̄σ = 0. From Fig. 7.3 we see that depending on the value
of �/σ , Alice can adjust the state of the reference token by choosing the size of the
superposition in momentum space p̄/σ so that the fidelity is maximized. That is,
having the ability to create different sizes of superposition in momentum space can
act as a resource to improve the communication channel specific to the state Alice
wishes to send to Bob.

7.4 Conclusions and Outlook

We began by introducing a communication protocol between two parties, Alice and
Bob, that do not share a reference frame associated with a compact group. Alice
sends to Bob a token of her reference frame along with a system she wishes to
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Fig. 7.3 For a reference token prepared in a superposition of two Gaussian states described by
Eq. (7.32), the maximum fidelity Fmax := max

[
F(ρ′S, ρS) | x̄, p̄, σ > 0

]
and the size of the

superposition in momentum space p̄max/σ that realizes this maximum is plotted as a function
of the width of the in position space �/σ of the state Alice sent to Bob as given in Eq. (7.30). For
all values of �/σ the size of the superposition in momentum space which realizes the maximum
fidelity is x̄maxσ = 0

communicate to him, and then Bob performs an appropriate recovery operation that
enables him to recover a state close to the one Alice wished to communicate.

In Sect. 7.2 we demonstrated that this communication protocol can be applied
when Alice’s and Bob’s reference frames are associated with a noncompact group,
even though averaging states over the entire group leads to non-normalizable
states. Furthermore, we demonstrated that this communication channel induces
decoherence in the basis furnished by the eigenkets of the generator of the group.
In Sect. 7.3 we applied this result to the study of communication between two
parties who do not share a reference frame associated with the translation group.
We introduced a sequence of Gaussian states |eσ 〉 of the reference token with spatial
width σ and saw that in the limit σ → 0, |eσ 〉 imitates a classical reference frame.
This suggests that the parameter 1/σ acts as the size of the reference token, since
as 1/σ becomes large the two parties are able to communicate perfectly (assuming
Bob is able to measure the reference token perfectly, δ→ 0). We also demonstrated
that for finite-size reference tokens, i.e., when 1/σ is finite, states less localized in
the position basis are better communicated to Bob and examined the case when the
reference token is prepared in a superposition.

We note that the group of time translations generated by a Hamiltonian is
a strongly continuous one-dimensional noncompact Lie group. Thus, provided a
covariant measurement of the reference token corresponding to a time observable
can be constructed [4], the above communication scheme can be employed. This
will be fruitful for communication between parties who do not share a temporal
reference frame, that is, their clocks are not synchronized. Furthermore, it will be
interesting to see how the above construction can be applied to noncompact Lie
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groups of higher dimension, such as the Euclidean group in 2 and 3 dimensions,
and ultimately the Poincaré group.

The intended application of the results in this chapter, as well as one of the
primary motivations for this investigation, is to study the act of changing quantum
reference frames.4 Palmer et al. [10] have constructed an operational protocol for
changing quantum reference frames associated with compact groups. They used the
state G[ρA⊗ρS] as a relational description of the state ρS with respect to a quantum
reference frame ρA, and then considered the operation of changing the quantum
reference frame from the state ρA to ρB . They found that this operation could not
be done perfectly, and that the best one could do is

G[ρA ⊗ ρS] → G[ρB ⊗ ρ′S], (7.34)

where ρ′S = R ◦ E[ρS]. In other words, one is not able to change quantum
reference frames without affecting the state of the system described with respect to
the reference frame—ρS changes to ρ′S when the reference frame is changed. This
results in a fundamental decoherence associated with the act of changing quantum
reference frames. This decoherence is described by the composition of the encoding
and recovery operations R ◦ E discussed in this chapter. Having generalized the
operation R◦E to reference frames associated with noncompact groups, we hope to
study the effect of changing quantum reference frames associated with the Galilean
and Poincaré groups. Understanding the process of changing quantum reference
frames is an essential step in the construction of a relational quantum theory, in
which all objects, including reference frames, are treated quantum mechanically.
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Part III
Quantizing Time



Chapter 8
The Conditional Probability
Interpretation of Time: The Case of
Interacting Clocks

In quantum theory, time enters through its appearance as a classical parameter in
the Schrödinger equation, as opposed to other physical quantities, such as position
or momentum, which are associated with self-adjoint operators. Operationally, this
time is what is measured by the clock on the wall of an experimenter’s laboratory.
This clock is a large classical object, not subject to quantum fluctuations, and
does not interact with the system whose evolution it is tracking. Quantum theory
describes the evolution of systems with respect to this clock. What changes when
one tries to construct a quantum theory of spacetime?

The canonical quantization of gravity leads to the Wheeler-DeWitt equation:
Physical states of the theory are annihilated by the Hamiltonian. In other words,
the wave function of the universe—which includes the experimenter’s clock, the
system the experimenter is interested in, and everything else—is in the ground state
of its Hamiltonian. Combined with the Schrödinger equation, the Wheeler-DeWitt
equation dictates that the physical states of the theory do not evolve in time. How
then do we explain the time evolution we see around us?

A necessary requirement for any quantum theory of gravity is to answer this
question and explain how the familiar Schrödinger equation comes about from
the Wheeler-DeWitt equation. The conditional probability interpretation of time
offers an answer. As introduced by Page and Wootters [20–22, 25], the conditional
probability interpretation defines the state of a system at a time t as a solution to the
Wheeler-DeWitt equation conditioned on a subsystem of the universe, serving as a
clock, to be in a state corresponding to the time t . Given an appropriate choice for
the Hamiltonian of the universe and choice of clock, one finds this conditional state
of the system satisfies the Schrödinger equation.

This interpretation of time was initially criticized by Kuchař [16, 21], who argued
that it was unable to reproduce the correct two-time correlation functions, i.e.
supposing a system was initially prepared in some state, what is the probability
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of finding the system in a different state at a later time? This criticism has since
been overcome in two different ways: first, by correctly formulating the two-
time correlation functions in terms of physical observables [7], and second, by
modelling the measurement of the two-time correlation function as two successive
von Neumann measurements [13].

Recently, the conditional probability interpretation of time has received consid-
erable attention. Gambini et al. [9, 10, 12] have demonstrated that the conditional
probability interpretation can result in a fundamental decoherence mechanism1 and
explored the consequences of this fact in relation to the black hole information
loss problem [11]. Leon et al. [17] have shown that this interpretation overcomes
Pauli’s objection to constructing a time operator in quantum mechanics. Others have
applied the formalism to a number of different systems and commented on various
aspects of the proposal [2, 3, 18, 19].

The purpose of this chapter is to extend the conditional probability interpretation
of time to take into account the possibility that the system being employed as a
clock interacts with a system whose evolution the clock is tracking. As gravity
couples everything, including clocks, this extension is necessary if the conditional
probability interpretation of time is to be applied in a quantum gravitational setting.
We find that taking into account a possible clock-system interaction within the
conditional probability interpretation of time results in a time-nonlocal modification
to the Schrödinger equation.

We begin in Sect. 8.1 by reviewing the extended phase space formulation of
classical mechanics [15, 24] and its quantization. In Sect. 8.2 we introduce the
conditional probability interpretation of time and its generalization to interacting
clocks and systems, which results in a modified Schrödinger equation. We then show
that this modified Schrödinger equation reduces to the familiar Schrödinger equation
in an appropriate limit. We derive a series solution to this modified Schrödinger
equation and demonstrate that the evolution it generates is time-nonlocal. We close
this chapter in Sect. 8.3 with a summary of the results presented and comment on
future directions of research.

8.1 The Hamiltonian Constraint in Classical and Quantum
Mechanics

Both classical and quantum mechanics describe the evolution of the state, or
equivalently the observables, of a physical system in time. However, general
relativity demands that time itself be treated like any other physical system, that
is, time should be treated dynamically. In this context, both classical and quantum

1The Schrödinger equation is replaced with a master equation, which induces decoherence.
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mechanics describe relations between two physical systems: A clock, which
indicates the time, and everything else. In this section we present a formulation
of classical mechanics in which time is treated dynamically and on equal footing
with the system whose evolution we are interested in. We then pass over to the
corresponding quantum theory à la Dirac [6].

Consider a system S described by the action

S =
∫ t2

t1

dt LS

(
q, q ′

)
, (8.1)

where LS

(
q, q ′

)
is the Lagrangian associated with S, q = q(t) denotes a set of

generalized coordinates describing S, and q ′ = q ′(t) denotes the differentiation of
these coordinates with respect to t .

Let us introduce an integration parameter τ and promote t to a dynamical variable
t (τ ), which we associate with the reading of a clock C. Through application of the
chain rule the action above may be expressed as

S =
∫ τ2

τ1

dτ ṫLS

(
q, q̇/ṫ

) =
∫ τ2

τ1

dτ L
(
q, q̇, ṫ

)
, (8.2)

where L
(
q, q̇, ṫ

) := ṫLS

(
q, q̇/ṫ

)
is the Lagrangian describing both C and S and the

dot denotes differentiation with respect to τ .
The Hamiltonian associated with L

(
q, q̇, ṫ

)
is obtained by a Legendre transfor-

mation with respect to both q̇ and ṫ

H̃ = pt ṫ + pqq̇ − L(q, q̇, ṫ) = ṫ (pt +HS) , (8.3)

where HS := pqq
′ − LS

(
q, q ′

)
is the Hamiltonian associated with LS

(
q, q ′

)
and

we have used the fact that the momentum conjugate to q defined by L
(
q, q̇, ṫ

)
is

pq := ∂L
(
q, q̇, ṫ

)
∂q̇

= ṫ
∂LS

(
q, q̇/ṫ

)
∂
(
q̇/ṫ
) 1

ṫ
= ∂LS

(
q, q ′

)
∂q ′

, (8.4)

which coincides with the momentum conjugate to q defined by LS

(
q, q ′

)
. The

momentum conjugate to t is

pt := ∂L
(
q, q̇, ṫ

)
∂ṫ

= LS

(
q, q ′

)− q ′pq = −HS. (8.5)

In light of Eq. (8.5), we see that term inside the brackets in Eq. (8.3) is constrained
to vanish
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H := pt +HS ≈ 0. (8.6)

We will refer to H as the total Hamiltonian as it describes both C and S.
It is natural to ask if the total Hamiltonian given in Eq. (8.6) is the most general

possible? The answer is no. The total Hamiltonian can differ in two important
ways:

1. An additional term Hint = Hint (t, pt , q, pq) may be included in the total
Hamiltonian, which couples C and S; this term will be referred to as the
interaction Hamiltonian.

2. The momentum pt may be replaced by a function of the conjugate variables
associated with C, which we will refer to as the clock Hamiltonian and denote
by HC = HC(t, pt ). Note that in general C may be a composite system and have
more than just one pair of conjugate variables.

Accounting for these generalizations, the most general total Hamiltonian is

H = HC +HS + λHint ≈ 0, (8.7)

where λ ∈ R is the strength of the interaction between C and S.
Motivating these generalization is general relativity, our best theory of time. The

Hamiltonian formulation of general relativity does not admit a total Hamiltonian
of the form given in Eq. (8.6). Total Hamiltonians that are linear in one of the
conjugate momenta, like Eq. (8.6), indicate there is a preferred time variable in the
theory [5], and this structure is not present in general relativity [15]. Further, gravity
couples everything, including a clock and the system whose evolution it is tracking.
Therefore, in a gravitational setting, we should expect an interaction Hamiltonian
Hint to appear in the total Hamiltonian H coupling C and S.

We now wish to quantize the theory described by the total Hamiltonian given
in Eq. (8.7). To do so, we follow the prescription given by Dirac [6]. We associate
with C and S the Hilbert spaces HC and HS , respectively. The total Hamiltonian H

becomes an operator acting on the kinematical Hilbert space Hkin = HC⊗HS , and
the constraint in Eq. (8.7) becomes

H |ψ〉〉 = (HC ⊗ IS + IC ⊗HS + λHint

) |ψ〉〉 = 0, (8.8)

where IC and IS denote the identity operators on HC and HS , respectively. The
double ket notation is used to remind us that |ψ〉〉 is a state of both the clock and
system. States |ψ〉〉 satisfying the constraint are in the physical Hilbert space Hph ⊂
Hkin; states in the physical Hilbert space |ψ〉〉 ∈ Hph will be referred to as physical
states. To completely specify the physical Hilbert space Hph one must also choose
an inner product on Hph, which we will do in the following section.

In general, the physical states evolve unitarily with respect to an external
time, this evolution being generated by the total Hamiltonian. However, in totally
constrained theories, such as the one defined by Eq. (8.8), the physical states are
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annihilated by the total Hamiltonian, H |ψ〉〉 = 0, and therefore do not evolve
with respect to any external time. The question then arises, how do we recover the
dynamics we see around us from the frozen state |ψ〉〉? How does the Schrödinger
equation come about from the constraint H |ψ〉〉 = 0?

These questions constitute one aspect of the problem of time in quantum gravity
[14, 16]. The conditional probability interpretation of time offers a way to reconcile
the fact that the physical states are frozen with the time evolution we see around us.
This is done by interpreting the outcome of a measurement of an observable on S

at a specific time t , as a measurement of the physical state |ψ〉〉 conditioned on the
clock being in a state corresponding to the time t .

8.2 The Conditional Probability Interpretation

We now introduce the conditional probability interpretation of time for theories
described by the general total Hamiltonian given in Eq. (8.8). We will introduce
the state of the system at a time t by conditioning a solution to the constraint, |ψ〉〉,
on the clock being in a state corresponding to the time t . This state of the system
will be seen to satisfy the Schrödinger equation in the limit where the interaction
Hamiltonian Hint vanishes.

8.2.1 The Modified Schrödinger Equation

In the classical theory specified by the total Hamiltonian given in Eq. (8.6), time is
defined operationally as the outcome of a measurement of the phase space variable
t associated with a clock governed by the Hamiltonian HC = pt . In this case, the
variable t is canonically conjugate to the clock Hamiltonian, {t, HC} = 1.

The quantized version of this notion of time is to define time as a measurement
of a time operator T on the clock Hilbert space HC which is canonically conjugate
to the clock Hamiltonian HC

[T ,HC] = i. (8.9)

In other words, states of the clock indicating different times correspond to
eigenstates |t〉 of the time operator T , and the associated eigenvalue t is the time
indicated by the clock. Employing the Baker-Campbell-Hausdorff formula, we
see that as a consequence of the commutation relation in Eq. (8.9), HC generates
translations of T

e−iHCsT eiHCs = T − sIC. (8.10)
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Resolving the identity on HC as IC =
∫
dt |t〉〈t | and making use of the spectral

representation of the time operator T = ∫ dt t |t〉〈t |, Eq. (8.10) may be expressed as

∫
dt te−iHCs |t〉〈t | eiHCs =

∫
dt (t − s) |t〉〈t | =

∫
dt t |t + s〉〈t + s| , (8.11)

or

e−iHCs |t〉 = |t + s〉 , (8.12)

up to an overall phase. We will refer to the set of states {|t〉 | ∀ t} as the clock states.
We now define the state of the system at time t as a solution to the constraint in

Eq. (8.8) conditioned on the clock being in the state |t〉

|ψS(t)〉 :=
( 〈t | ⊗ IS

) |ψ〉〉 , (8.13)

where |ψS(t)〉 ∈ HS . The state |ψS(t)〉 should be thought of as the time-dependent
state of the system in the conventional formulation of quantum mechanics. With this
definition of the system state, note that we may express the physical state |ψ〉〉 as

|ψ〉〉 =
(∫

dt |t〉〈t | ⊗ IS

)
|ψ〉〉 =

∫
dt |t〉 |ψS(t)〉 . (8.14)

As mentioned above, we need to choose an inner product on the physical Hilbert
space Hph. We will choose this inner product to be

〈〈ψ |φ〉〉ph := 〈〈ψ |
( |t〉〈t | ⊗ IS

)|φ〉〉 , (8.15)

for two states |ψ〉〉 and |φ〉〉 in Hph. We will also demand that for states in Hph, this
inner product is independent of the choice of t and that these states are normalized
with respect to this inner product

1 = 〈〈ψ |ψ〉〉ph
=
[∫

dt ′
〈
t ′
∣∣ 〈ψS(t

′)
∣∣
]
|t〉〈t | ⊗ IS

[∫
dt ′′

∣∣t ′′〉 ∣∣ψS(t
′′)
〉]

= 〈ψS(t)|ψS(t)〉 . (8.16)

From the above equation, we see that this choice of inner product and normalization
of the physical states ensure that the system state |ψS(t)〉 is properly normalized at



8.2 The Conditional Probability Interpretation 145

all times.2 Consequently, we can maintain the usual probabilistic interpretation of
|ψS(t)〉.

Let us observe how |ψS(t)〉 changes with the parameter t labelling the clock
states by acting on both sides of Eq. (8.13) with id/dt :

i
d

dt
|ψS(t)〉 = i

d

dt

( 〈t | ⊗ IS
) |ψ〉〉

= − 〈t | (HC ⊗ IS
) |ψ〉〉

= − 〈t | (H − IC ⊗HS − λHint

) |ψ〉〉 . (8.17)

Using the fact that H |ψ〉〉 = 0 we find |ψS(t)〉 satisfies

i
d

dt
|ψS(t)〉 = HS |ψS(t)〉 + λ 〈t |Hint |ψ〉〉 . (8.18)

Inserting a resolution of the identify on HC in terms of the clock states IC =∫
dt |t〉〈t | between Hint and |ψ〉〉 in the second term of Eq. (8.18) and using the

definition of the system state in Eq. (8.13), we find

i
d

dt
|ψS(t)〉 = HS |ψS(t)〉 + λ

∫
dt ′A(t, t ′) |ψS(t

′)〉 , (8.19)

where A(t, t ′) := 〈t |Hint

∣∣t ′〉 is an operator acting on HS . We will refer to Eq. (8.19)
as the modified Schrödinger equation. When the interaction Hamiltonian vanishes,
λ = 0, the modified Schrödinger equation reduces to the usual Schrödinger
equation.

The second term on the right-hand side of Eq. (8.19) is a linear integral operator
on HS with integration kernel A(t ′, t); we will denote this integral operator as

[HA] |ψS(t)〉 :=
[∫

dt ′A(t, t ′)
]
|ψS(t)〉 =

∫
dt ′A(t, t ′)

∣∣ψS(t
′)
〉
. (8.20)

2We should emphasize this is a choice of inner product and normalization of the physical states,
which may severely reduce the size of the physical Hilbert space. Furthermore, it may not
be necessary to preserve the probabilistic interpretation of the system state. For example, the
probabilistic interpretation may only be applicable in some limit, and it is the task of the physicist
to explain how this limit comes about. To quote DeWitt on this point [4, 15]:

. . . one learns that time and probability are phenomenological concepts.

And Kiefer’s clarification of DeWitt’s statement [15]:

The reference to probability refers to the ‘Hilbert-space’, problem, which is intimately
connected with the ‘problem of time’. If time is absent, the notion of a probability conserved
in time does not make much sense; the traditional Hilbert-space structure was designed to
implement the probability interpretation, and its fate in a timeless world thus remains open.



146 8 The Conditional Probability Interpretation of Time: The Case of Interacting Clocks

Note,3 HA is a self-adjoint operator if and only if A(t, t ′) = A(t ′, t)†. We see this
is true from the definition of A(t, t ′)

A(t, t ′) := 〈t |Hint |t ′〉 =
[ 〈t ′|Hint |t〉

]† = A(t ′, t)†, (8.21)

and therefore HA is self-adjoint. If HA is also a bounded operator,

‖HA‖ :=
∫

dtdt ′
∥∥A(t, t ′)∥∥2

<∞, (8.22)

then HA is an integral operator of the Hilbert-Schmidt type [8, 26].
With the definition of HA, let us write the modified Schrödinger equation in a

more suggestive form

i
d

dt
|ψS(t)〉 =

[
HS + λHA

] |ψS(t)〉 . (8.23)

Expressed this way, the modified Schrödinger equation can be seen as the ordinary
Schrödinger equation with the system Hamiltonian HS replaced with the self-adjoint
integral operator HS + λHA.

The evolution generated by the modified Schrödinger equation must preserve the
norm of the system state as demanded by Eq. (8.16)

1 = 〈ψS(t)|ψS(t)〉 ∀t ⇒ 0 = d

dt
〈ψS(t)|ψS(t)〉 . (8.24)

Evaluating d
dt
〈ψS(t)|ψS(t)〉 using Eq. (8.19) yields the condition

0 = λ

∫
dt ′
( 〈
ψS(t)|A(t, t ′)|ψS(t

′)
〉− 〈ψS(t)|A(t, t ′)|ψS(t

′)
〉∗ )

. (8.25)

Since A(t, t ′) := 〈t |Hint |t ′
〉
, Eq. (8.25) is a condition on the interaction Hamiltonian

such that the modified Schrödinger equation is consistent with the normalization
condition in Eq. (8.16).

We now show that Eq. (8.25) is satisfied for any choice of interaction Hamilto-
nian. Using Eq. (8.14) and the definition of the operator A(t, t ′), the right-hand side
of Eq. (8.25) can be expressed as

〈〈ψ | [λHint , |t〉〈t | ⊗ IS] |ψ〉〉 = 〈〈ψ | [H −HC ⊗ IS − IC ⊗HS, |t〉〈t | ⊗ IS] |ψ〉〉
= − 〈〈ψ | ( [HC, |t〉〈t |]⊗ IS

) |ψ〉〉
= −i d

dt
〈〈ψ | ( |t〉〈t | ⊗ IS

) |ψ〉〉

= −i d
dt
〈〈ψ |ψ〉〉ph , (8.26)

3A proof of this can be found on pages 197–198 of [26].
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|ψ〉〉

|ψS(t0)〉

t
t0

Fig. 8.1 The rectangular prism is a pictorial representation of the joint state of the clock and
system |ψ〉〉 = ∫

dt |t〉 |ψS(t)〉. The horizontal axis represents the Hilbert space associated with
the clock HC and the directions orthogonal to the horizontal axis represent the Hilbert space of the
system state HS . The system state |ψS(t0)〉 at the time t0 is obtained by conditioning |ψ〉〉 on the
clock being in the state |t0〉 and pictorially represented by a slice of the rectangular prism. Adapted
from Giovannetti et al. [13]

which vanishes, since by construction 〈〈ψ |ψ〉〉ph = 1. Therefore, we conclude that
the evolution generated by the modified Schrödinger equation preserves the norm
of |ψS(t)〉.

From Eq. (8.14) we see that |ψ〉〉 describes an entangled state of the clock and
system; see Fig. 8.1. This entanglement encodes the time evolution of the system
state |ψS(t)〉 generated by the modified Schrödinger equation. This is somewhat
analogous to the situation in general relativity. The state |ψ〉〉 is analogous to the
four-dimensional spacetime metric—neither evolve with respect to an external time.
However, one can foliate the four-dimensional spacetime by spacelike hypersurfaces
(by choosing a clock), and then the four-dimensional metric encodes the evolution
from one hypersurface to the next of the induced 3-metric and its conjugate
momentum on these hypersurfaces. This evolution is analogous to the evolution
of the system state |ψS(t)〉 governed by the modified Schrödinger equation.

If the interaction Hamiltonian happens to be of the form

λHint = λ
∑
i

fi(T )⊗ Bi, (8.27)

where fi(T ) is a function of the time operator T and Bi is a self-adjoint operator on
HS , then the operator A(t, t ′) is

A(t, t ′) = 〈t |Hint |t ′〉
=
∑
i

〈t |fi(T )|t ′〉Bi

=
∑
i

〈t |
(∫

dt ′′ fi(t ′′)|t ′′〉〈t ′′|
)
|t ′〉Bi

= δ(t − t ′)
∑
i

fi(t)Bi. (8.28)
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Substituting Eq. (8.28) into the modified Schrödinger equation and simplifying,
we find

i
d

dt
|ψS(t)〉 =

[
HS + λ

∑
i

fi(t)Bi

]
|ψS(t)〉 , (8.29)

which we recognize as the ordinary Schrödinger equation with HS replaced with the
time-dependent Hamiltonian

HS(t) = HS + λ
∑
i

fi(t)Bi. (8.30)

8.2.2 Solving the Modified Schrödinger Equation

To further explore the consequences of the interaction Hamiltonian λHint which
couples the clock and system, we seek a series solution in the interaction strength λ

to the modified Schrödinger equation.
Suppose the modified Schrödinger equation can be solved for |ψS(t)〉 in terms of

a time evolution operator V (t), so that the solution may be given as

|ψS(t)〉 = V (t, t0) |ψS(t0)〉 , (8.31)

where |ψS(t0)〉 ∈ HS is the state of the system at the time t = t0 and V (t0, t0) = IS .
Suppose V (t, t0) may be expanded in powers of λ as

V (t, t0) =
∞∑
n=0

λnVn(t, t0). (8.32)

Upon substituting |ψS(t)〉 = V (t, t0) |ψS(t0)〉 into the modified Schrödinger
equation and equating terms at equal order in λ, we find the operator V0(t, t0)

satisfies

i
d

dt
V0(t, t0) = HSV0(t, t0) ⇒ V0(t, t0) = e−iHS(t−t0), (8.33)

and we see that V0(t, t0) is the usual Schrödinger time evolution operator U(t, t0) :=
e−iHS(t−t0). The higher order operators Vn(t, t0) satisfy

i
d

dt
Vn(t, t0) = HSVn(t, t0)+

∫
dt ′A(t, t ′)Vn−1(t

′, t0), (8.34)

the solution to which is the recurrence relation

Vn(t, t0) = −iU(t, t0)

∫ t

t0

ds U(s, t0)
†
∫

duA(s, u)Vn−1(u, t0). (8.35)
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Using Eqs. (8.33) and (8.35), the time evolution operator V (t, t0) may be expanded
to leading order in λ as

V (t, t0) = U(t, t0)

[
IS + (−iλ)

∫ t

t0

ds U(s, t0)
†
∫

duA(s, u)U(u, t0)+O
(
λ2
)]

.

(8.36)

8.3 Summary

In this chapter we have generalized the conditional probability interpretation of
time to account for an interaction between a clock and the system whose evolution
it is tracking. This is a necessary consideration if the conditional probability
interpretation is to be applied to any model of quantum gravity because gravity
couples everything, including any clock and system. In the case of an interaction
between the clock and system, we find the conditional state of the system |ψS(t)〉
satisfies a time-nonlocal modified Schrödinger equation.

We find that when the interaction Hamiltonian Hint is of the form given in
Eq. (8.27), the modified Schrödinger equation becomes the ordinary Schrödinger
equation with a time-dependent Hamiltonian dependent on Hint . In the limit when
the interaction between the clock and system vanishes, Hint = 0, the modified
Schrödinger equation reduces to the ordinary Schrödinger equation.

As it stands, the conditional probability interpretation of time does not specify a
unique choice of clock states, and thus does not address the multiple choice problem
[16]. In this chapter we chose clock states that are completely delocalized in the
energy basis of the clock, that is, eigenstates of the operator canonically conjugate
to the clock Hamiltonian. These clock states are maximally asymmetric under the
action of the group generated by the clock Hamiltonian, which suggests that an
appropriate figure of merit for choosing the clock states may come from the resource
theory of asymmetry [1].

Future work will focus on realizing specific examples of the developed formal-
ism. It should be noted that although the results presented were in the context
of nonrelativistic quantum mechanics, in principle, there is nothing stopping the
application of the conditional probability interpretation to relativistic quantum field
theory and theories of quantum gravity.

Another avenue to explore is the possibility of replacing the infinite dimensional
clock Hilbert space with a finite dimensional one. The canonical commutation
relations between the clock Hamiltonian and time operator in Eq. (8.9) will no
longer be satisfied. However, it is still possible to define a self-adjoint time
operator that satisfies an approximate canonical commutation relation with the clock
Hamiltonian [23]. It will be interesting to explore the role the dimension of the clock
Hilbert space plays in a classical limit.

Another task will be to generalize the above formalism to mixed states. This
will allow for the investigation of how an interaction between the system and clock
affects the fundamental decoherence mechanism discussed by Gambini et al. [9–12].
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Epilogue: What Have We Learned?

Part I: Detectors in Curved Spacetimes

The way we learn about a system is by measuring it. This is true in quantum field
theory on curved spacetime, in particular, with regard to learning about the entan-
glement structure of a field theory. The entanglement harvesting protocol is a mea-
surement model that can be used to probe the entanglement structure of a quantum
field theory. With this perspective, it was emphasized throughout that entanglement
in quantum field theory depends on the measurement model employed. This is
analogous to how the particle content of a field theory depends on the measuring
apparatus, specifically on the motion of the observer carrying the apparatus.

In Chap. 3 we gave a physical motivation for a particular measurement model:
the Unruh-DeWitt detector. We identified the POVM elements associated with this
measurement model and derived the final state of two detectors moving along
arbitrary timelike trajectories in spacetimes admitting a Wightman function. We
quantified the amount of entanglement that appears in this state as a result of
the detectors’ local interaction with the field in terms of several measures of
entanglement.

In Chap. 4 we applied these results to study how the entanglement structure of
the Minkowski vacuum is affected by topological identifications. Why should we be
interested in the global topology of spacetime? The reason is that the topology of
our Universe may be non-trivial, in which case these considerations are bound to be
important [8].

Chapter 5 investigated the behaviour of Unruh-DeWitt detectors operating in
the exterior region of both the BTZ and RP2 geon black holes. The response of
a detector in the RP2 geon spacetime was shown to be different than an identical
detector in the BTZ spacetime, even though these spacetimes are locally indistin-
guishable from one another in the region in which the detectors are operating. We
saw that the transition rate of a detector in the exterior of the RP2 geon spacetime
developed a time dependence as a result of the non-stationary features hidden behind
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its horizons. The point being that information about the difference between the
global topology of the BTZ and RP2 spacetimes is encoded in the vacuum state
of a quantum field such that it is accessible by local measurements of the field.

We then applied the entanglement harvesting protocol developed in Chap. 3
to examine the entanglement structure of the Hartle-Hawking vacuum associated
with the BTZ black hole, and how it depends on the parameters defining the
spacetime. This served as an example of the entanglement harvesting protocol in
a curved spacetime. We saw that as the detectors moved closer to the horizon, the
entanglement that appears between them decreases. We gave an interpretation of
this result in terms of the local Hawking temperature experienced by the detectors
and red shift effects.

Part II: Quantum Reference Frames

Part II asked: What happens if we replace a classical reference frame with a quantum
one? Our focus was on spatial reference frames associated with the translation
group and inertial reference frames associated with the group of Galilean boosts.
The motivation for studying these reference frames was that they are the simplest
examples of reference frames associated with noncompact groups. If we are to apply
the theory of quantum reference frames to relativistic scenarios where the relevant
group is the Poincaré group, we must understand how the theory generalizes to
reference frames associated with noncompact groups.

Chapter 6 demonstrated the failure of the G-twirl to define a properly normalized
relational state when the twirling operation is carried out over a noncompact group.
For the group of translations and Galilean boosts, we identified a relational state
as the trace over the centre-of-mass degrees of freedom of a composite system and
showed that this state appears naturally from averaging over this group. We then
studied the informational properties of transforming between an external description
of a composite system to a fully relational one.

Chapter 7 generalized the communication protocol of Bartlett et al. [5] to parties
communicating without a shared classical reference frame associated with a one-
dimensional noncompact Lie group. As an example of this protocol, we considered
two parties employing different classical reference frames associated with a spatial
origin, and quantified how well they can communicate as a function of the reference
token prepared by the sender.

Part III: Quantizing Time

One could argue that the main difficulty, both conceptually and mathematically,
in constructing a quantum theory of gravity is that by definition it requires a
background independent quantization scheme. This is dramatically different than
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other theories of physics. We cannot consider matter moving around on a fixed
background geometry and apply the usual quantization techniques; rather, we need
to quantize matter and spacetime together. This strongly motivates a relational point
of view.

The conceptual appeal of the conditional probability interpretation of time is that
it is manifestly relational: everything is quantized, a clock is chosen as a subsystem
of the universe, and the state of a system comprising everything else is defined
relative to (conditioned on) the state of the clock. The time evolution of the system is
encoded in the correlations of the entangled state of the clock and system satisfying
the Wheeler-DeWitt equation. I find it satisfying that the relativity principle in the
conditional probability interpretation is realized through entanglement.

Part III generalized the conditional probability interpretation to take into account
the possibility of a coupling between the clock and the rest of the universe. We
should expect such a coupling when the gravitational interaction between the clock
and system is taken into account. We saw that what results is a time-nonlocal
modification to Schrödinger equation. Future work will focus on exploring the
full consequence of this fact and constructing explicit examples of the developed
formalism.

In both classical and quantum mechanics, space and time are the entities we use
to describe the dynamics of a given system. Quantum gravity is the quantization
of space and time. This quantization will surely have an effect on the dynamics
governing ordinary quantum theory in some limit.

Concluding Thought

Applying the theory of quantum information to situations at the boundary of
relativity and quantum theory will certainly lead to new insights into the nature
of our world. The hope is that this thesis takes a small step in that direction.



Appendix A
Derivation of Eq. (3.27)

The final state of two initially unexcited Unruh-Dewitt detectors interacting with the
vacuum state of a scalar field is given by Eq. (3.24)

ρAB =

⎛
⎜⎜⎝
ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44

⎞
⎟⎟⎠ , (A.1)

where ρ44 = E +O
(
λ6
)

and E is the leading order contribution given by

λ4
∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′

[
ηA(t

′)ηB(t)ηB(T )ηA(T ′)ei[−�AτA(t
′)−�BτB(t)+�AτA(T

′)+�BτB(T )]

〈
φA(t

′)φB(t)φB(T )φA(T ′)
〉

+ ηB(t
′)ηA(t)ηB(T ′)ηA(T )ei[−�BτB(t

′)−�AτA(t)+�BτB(T
′)+�AτA(T )]

〈
φB(t

′)φA(t)φA(T )φB(T ′)
〉

+ ηA(t
′)ηB(t)ηB(T ′)ηA(T )ei[−�AτA(t

′)−�BτB(t)+�BτB(T
′)+�AτA(T )]

〈
φA(t

′)φB(t)φA(T )φB(T ′)
〉

+ ηB(t
′)ηA(t)ηA(T ′)ηB(T )ei[−�BτB(t

′)−�AτA(t)+�AτA(T
′)+�BτB(T )]

〈
φB(t

′)φA(t)φB(T )φA(T ′)
〉 ]
. (A.2)
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We wish to express the 4-point functions appearing above in terms of Wightman
functions. Let us express each field in terms of its positive and negative frequency
parts as φi = φ+i + φ−i , where

φ+i =
∫

dμ(k) uk(xi)ak and φ−i =
∫

dμ(k) uk(xi)
∗a†

k , (A.3)

and note φ+i |0〉 = 0 and 〈0|φ−i = 0; further

φ+i φ
−
j = φ−j φ

+
i +

[
φ+i , φ

−
j

]
, (A.4)

and

[
φ+i , φ

−
j

]
=
∫

dμ(k)dμ(p) uk(xi)u
∗
p(xj )

[
ak, a

†
p

]

=
∫

dμ(k) uk(xi)u
∗
k(xj )I

= W(xi, xj )I. (A.5)

Using these observations we can express an arbitrary 4-point function in terms of
the Wightman function as

〈φ1φ2φ3φ4〉 =
〈
φ+1
(
φ+2 + φ−2

) (
φ+3 + φ−3

)
φ−4
〉

= 〈φ+1
(
φ+2 φ+3 + φ+2 φ−3 + φ−2 φ+3 + φ−2 φ−3

)
φ−4
〉

= 〈φ+1 φ+2 φ−3 φ−4
〉+ 〈φ+1 φ−2 φ+3 φ−4

〉
. (A.6)

In the above equation, the second term simplifies to

〈
φ+1 φ−2 φ+3 φ−4

〉 = 〈(φ−2 φ+1 +
[
φ+1 , φ−2

]) (
φ−4 φ+3 +

[
φ+3 , φ−4

])〉
= 〈[φ+1 , φ−2

] [
φ+3 , φ−4

]〉
= W(x1, x2)W(x3, x4), (A.7)

while the first term simplifies to

〈
φ+1 φ+2 φ−3 φ−4

〉 = 〈φ+1
(
φ−3 φ+2 +

[
φ+2 , φ−3

])
φ−4
〉

= 〈φ+1 φ−3 φ+2 φ−4
〉+ 〈φ+1

[
φ+2 , φ−3

]
φ−4
〉

= W(x1, x3)W(x2, x4)+W(x2, x3)
〈
φ+1 φ−4

〉
= W(x1, x3)W(x2, x4)+W(x2, x3)W(x1, x4). (A.8)
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Therefore we may express the 4-point function as

〈φ1φ2φ3φ4〉 = W(x1, x2)W(x3, x4)+W(x1, x3)W(x2, x4)

+W(x2, x3)W(x1, x4). (A.9)

Applying Eq. (A.9) to each of the 4-point functions in Eq. (A.2), E may be
expressed as

E = λ4
∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′

[
E|X|2(t

′, t, T ′, T )+ E|C|2(t
′, t, T ′, T )+ EPAPB

(t ′, t, T ′, T )
]
, (A.10)

where

E|X|2(t
′, t, T ′, T )

:= ηA(t
′)ηB(t)ηB(T )ηA(T ′)ei[−�AτA(t

′)−�BτB(t)+�AτA(T
′)+�BτB(T )]

×W(xA(t
′), xB(t))W(xB(T ), xA(T

′))

+ ηB(t
′)ηA(t)ηB(T ′)ηA(T )ei[−�BτB(t

′)−�AτA(t)+�BτB(T
′)+�AτA(T )]

×W(xB(t
′), xA(t))W(xA(T ), xB(T

′))

+ ηA(t
′)ηB(t)ηB(T ′)ηA(T )ei[−�AτA(t

′)−�BτB(t)+�BτB(T
′)+�AτA(T )]

×W(xA(t
′), xB(t))W(xA(T ), xB(T

′))

+ ηB(t
′)ηA(t)ηA(T ′)ηB(T )ei[−�BτB(t

′)−�AτA(t)+�AτA(T
′)+�BτB(T )]

×W(xB(t
′), xA(t))W(xB(T ), xA(T

′)), (A.11)

E|C|2(t
′, t, T ′, T )

:= ηA(t
′)ηB(t)ηB(T )ηA(T ′)ei[−�AτA(t

′)−�BτB(t)+�AτA(T
′)+�BτB(T )]

×W(xA(t
′), xB(T ))W(xB(t), xA(T

′))

+ ηB(t
′)ηA(t)ηB(T ′)ηA(T )ei[−�BτB(t

′)−�AτA(t)+�BτB(T
′)+�AτA(T )]

×W(xB(t
′), xA(T ))W(xA(t), xB(T

′))

+ ηA(t
′)ηB(t)ηB(T ′)ηA(T )ei[−�AτA(t

′)−�BτB(t)+�BτB(T
′)+�AτA(T )]

×W(xB(t), xA(T ))W(xA(t
′), xB(T ′))

+ ηB(t
′)ηA(t)ηA(T ′)ηB(T )ei[−�BτB(t

′)−�AτA(t)+�AτA(T
′)+�BτB(T )]

×W(xA(t), xB(T ))W(xB(t
′), xA(T ′)), (A.12)
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EPAPB
(t ′, t, T ′, T )

:= ηA(t
′)ηB(t)ηB(T )ηA(T ′)ei[−�AτA(t

′)−�BτB(t)+�AτA(T
′)+�BτB(T )]

×W(xB(t), xB(T ))W(xA(t
′), xA(T ′))

+ ηB(t
′)ηA(t)ηB(T ′)ηA(T )ei[−�BτB(t

′)−�AτA(t)+�BτB(T
′)+�AτA(T )]

×W(xA(t), xA(T ))W(xB(t
′), xB(T ′))

+ ηA(t
′)ηB(t)ηB(T ′)ηA(T )ei[−�AτA(t

′)−�BτB(t)+�BτB(T
′)+�AτA(T )]

×W(xA(t
′), xA(T ))W(xB(t), xB(T

′))

+ ηB(t
′)ηA(t)ηA(T ′)ηB(T )ei[−�BτB(t

′)−�AτA(t)+�AτA(T
′)+�BτB(T )]

×W(xB(t
′), xB(T ))W(xA(t), xA(T

′)). (A.13)

Observe that E|X|2(t ′, t, T ′, T ) factors as

E|X|2(t
′, t, T ′, T ) =

[
ηA(t

′)ηB(t)e−i[�AτA(t
′)+�BτB(t)]W(xA(t

′), xB(t))

+ ηB(t
′)ηA(t)e−i[�BτB(t

′)+�AτA(t)]W(xB(t
′), xA(t))

]

×
[
ηA(T

′)ηB(T )ei[�AτA(T
′)+�BτB(T )]W(xB(T ), xA(T

′))

+ ηB(T
′)ηA(T )ei[�BτB(T

′)+�AτA(T )]W(xA(T ), xB(T
′))
]
,

(A.14)

and thus the integration of E|X|2(t ′, t, T ′, T ) may be expressed as

λ4
∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′ E|X|2(t
′, t, T ′, T )

=
∣∣∣∣λ2
∫
t>t ′

dtdt ′
[
ηA(t

′)ηB(t)e−i[�AτA(t
′)+�BτB(t)]W(xA(t

′), xB(t))

+ ηB(t
′)ηA(t)e−i[�BτB(t

′)+�AτA(t)]W(xB(t
′), xA(t))

]∣∣∣∣
2

, (A.15)

which upon comparison with the definition X in Eq. (3.26), we see that

λ4
∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′ E|X|2(t
′, t, T ′, T ) = |X|2 . (A.16)
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Now observe from Eq. (A.12) that E|C|2(t ′, t, T ′, T ) has the following properties

E|C|2(t
′, t, T ′, T ) = E|C|2(t, t

′, T ′, T ) = E|C|2(t
′, t, T , T ′), (A.17)

and that for a function f (x, y), such that f (x, y) = f (y, x), the following holds

∫
x>y

dxdy f (x, y) =
∫
x<y

dxdy f (x, y) = 1

2

∫
dxdy f (x, y). (A.18)

Using these observations, the integration of E|C|2(t ′, t, T ′, T ) specified by
Eq. (A.10) is equivalent to

∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′ E|C|2(t
′, t, T ′, T )

= 1

4

∫
dtdt ′

∫
dT dT ′E|C|2(t

′, t, T ′, T ). (A.19)

By relabeling the integration variables for different terms in Eq. (A.12), it is seen
that

1

4

∫
dtdt ′

∫
dT dT ′ E|C|2(t

′, t, T ′, T )

=
∣∣∣∣
∫

dtdt ′ηB(t)ηA(t ′)ei[�BτB(t)−�AτA(t
′)]W(xA(t

′), xB(t))
∣∣∣∣
2

. (A.20)

Then, using Eqs. (A.20) and (A.20) and comparing with the definition of C in
Eq. (3.25), we find that

∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′ E|C|2(t
′, t, T ′, T ) = |C|2 . (A.21)

By similar arguments leading to Eq. (A.21), one can show

∫
t>t ′

dtdt ′
∫
T>T ′

dT dT ′ EPAPB
(t ′, t, T ′, T ) = PAPB, (A.22)

where PA and PB are defined by Eq. (3.9).
Therefore, using Eqs. (A.10), (A.16), (A.21), and (A.22), we find

E = |X|2 + |C|2 + PAPB, (A.23)

as stated in Eq. (3.27).



Appendix B
Mathematical Considerations

B.1 Quotient Spacetimes and the Method of Images

Some spacetime manifolds can be constructed as quotients by the action of a
group on a different spacetime manifold. This quotient space construction is useful
for understanding properties of these spacetimes that may have initially been
constructed another way (for example, the BTZ black hole [3, 4]). In Part I of
this thesis we exploited the quotient space structure of several spacetimes to easily
construct Green’s functions on them à la the method of images, which are necessary
to describe the behaviour of detectors. In this appendix, the basic properties of
quotient spacetimes are discussed and the method of images is introduced. This
appendix follows closely the discussion in [6]; more details can be found there.

Consider a group G which acts on a spacetime manifold M. The action of G on
M is a map of sets M × G → M, denoted as (p, g) �→ pg, such that pe = p,
with e ∈ G being the identity element, and (pg)g′ = p(gg′) for all p ∈ M and
g, g′ ∈ G. The G-orbit of p ∈M is the set of points pg for all g ∈ G.

The space of all G orbits M/G is known as the quotient space. In general, a
quotient space M/G will not be a manifold. The quotient space M/G is a manifold
if and only if the group action of G is free and properly discontinuous.

A group action is free if the isotropy group Gp := {g ∈ G |pg = p} is trivial at
every point p ∈M, that is, for each p ∈M, pg = p implies that g = e. A group
action is properly discontinuous if:

1. Any two points p, p′ ∈M that do not lie on the same orbit have neighbourhoods
U and U ′ such that gU ∩ U ′ = 0 for all g ∈ G;

2. For each p ∈M, the isotropy group Gp is finite; and
3. Every point p ∈M has a neighbourhood U such that gU = U for g ∈ Gp, and

gU ∩ U = 0 for g /∈ Gp.

The advantage of considering quantum field theories on quotient spacetimes is
that Green’s functions in the quotient spacetime M/G can be constructed via the

© Springer Nature Switzerland AG 2019
A. R. H. Smith, Detectors, Reference Frames, and Time, Springer Theses,
https://doi.org/10.1007/978-3-030-11000-0

161

https://doi.org/10.1007/978-3-030-11000-0


162 B Mathematical Considerations

method of images from the Green’s function in the original spacetime M. If we are
given a Green’s function GM(x, x′) on a spacetime M, the corresponding Green’s
function GM/G(x, x

′) on the quotient spacetime M/G is given by the image sum
[1, 2]

GM/G(x, x
′) =

∑
n

ηnGM(x, gnx′), (B.1)

where gnx′ denotes the group action of the group element gn on x′ and η = {1,−1}
corresponding to untwisted and twisted fields, respectively.1

B.2 The Theory of Distributions

For convenience, we summarize here the basic properties of distributions we have
used in this thesis and provide a proof of the identity used in obtaining Eq. (4.25).

Recall that the definition of a distribution G acting on a smooth test function
f (x) that tends to zero as y →±∞ is given by

〈G, f 〉 := PV
∫ ∞
−∞

dx g(x)f (x), (B.2)

where the generalized function g(x) defines the distribution G and PV specifies that
the principle value of the integral should be taken. The derivative of a distribution is
obtained from the above definition by integrating by parts to give

〈
G′, f

〉 = − 〈G, f ′
〉
. (B.3)

The distribution 1/x acting on a test function f (x) is defined as

〈
1

x
, f (x)

〉
:= PV

∫ ∞
−∞

dx
f (x)

x
. (B.4)

All the subsequent inverse power distributions 1/xn are defined as distributional
derivatives of 1/x, hence

〈
1

x2 , f (x)

〉
=
〈

1

x
, f ′(x)

〉
=
∫ ∞

0
dx

f (x)+ f (−x)− 2f (0)

x2 . (B.5)

Equation (B.5) is used in arriving at the expression for transition probability of an
Unruh-DeWitt detector in Minkowski space given in Eq. (4.27).

1More generally, η = eiδ . However, we will restrict ourselves to η = ±1, which corresponds to
the case of untwisted and twisted fields.



Appendix C
Derivation of Eq. (5.27)

As derived in Sect. 5.3, in the sharp switching limit the transition rate of an Unruh-
DeWitt detector outside the BTZ black hole turned on in the far past is given by

ṖBTZ(τ )

λ2
= 1

4
+ 1

2π
√

2

∞∑
n=−∞

∫ ∞
0

ds̃

Re

[
e−i��s̃

(
1√

σ(xD(τ), �nxD(τ − �s̃))

− ζ√
σ(xD(τ), �nxD(τ − �s̃))+ 2

)]
, (C.1)

and for the detector trajectory specified in Eq. (5.24), we have

σ
(
xD(τ), �

nxD(τ − �s̃)
) = 2

R2 − r2
h

r2
h⎡

⎣ R2

R2 − r2
h

sinh2
(
nπ

rh

�

)
− sinh2

⎛
⎝ rh√

R2 − r2
h

s̃

2

⎞
⎠
⎤
⎦ .

(C.2)

For convenience, let us define

Kn := R2

R2 − r2
h

sinh2
(
nπ

rh

�

)
, Qn := Kn + r2

h

R2 − r2
h

, and

β := 2π
√
R2 − r2

h/rh, (C.3)
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in terms of which the transition rate simplifies to

ṖBTZ(τ )

λ2 = 1

4
+ 1

2β
×

∞∑
n=−∞

∫ ∞
0

ds̃

Re

⎡
⎢⎢⎣e−i��s̃

⎛
⎜⎜⎝ 1√

Kn − sinh2
(
π
β
s̃
) − ζ√

Qn − sinh2
(
π
β
s̃
)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ .

(C.4)

We now focus on evaluating the integrals appearing above, which are of the form

I (a, P ) := Re
∫ ∞

0
dx

e−iax√
P − sinh2 x

. (C.5)

Hodgkinson and Louko [7] evaluated I (a, p), and we summarize their approach
below.

We first examine the case when P = 0, in which Eq. (C.5) simplifies to

I (a, 0) = −
∫ ∞

0
dx

sin ax

sinh x
= −π

2
tanh

π

2
a, (C.6)

where the last equality was obtained using Mathematica. Note that Eq. (C.6) may
be expressed as

I (a, 0) = −π

2
+ e−πa/2 Re

∫ ∞
0

dy
e−iay

cosh y
, (C.7)

which may be confirmed by directly evaluating the above integral and comparing
with Eq. (C.6).

Supposing that P > 0, we may express Eq. (C.5) as a contour integral

I (a, P ) = Re
∫
C1

dz
e−iaz√

P − sinh2 z
, (C.8)

where C1 is the contour from z = 0 to z = ∞ along the positive real axis with a
dip into the lower half plane around the branch point z = arcsin

√
P . The contour

C1 may be deformed into the union of the contours C2 and C3, where C2 runs form
z = 0 to z = −iπ/2 along the negative imaginary axis and C3 in the half line z =
y− iπ/2 for y ∈ (0,∞). As the integrand has no singularities for Im z ∈ [−π/2, 0)
and vanishes as Re[z] → ∞ for Im[z] < 0, the deformation of C1 into C2 ∪ C3
does not change the value of the integral.
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With these choices of contours, Eq. (C.8) becomes

I (a, P ) = Re
∫
C2

dz
e−iaz√

P − sinh2 z
+ Re

∫
C3

dz
e−iaz√

P − sinh2 z

= Re
∫ −π/2

0
dz

ieaz√
P + sin2 z

+ Re
∫ ∞

0
dy

e−ia(y−iπ/2)√
P − sinh2(y − iπ/2)

= e−aπ/2 Re
∫ ∞

0
dy

e−iay√
P + cosh2 y

. (C.9)

Applying Eqs. (C.6) and (C.9) to the transition rate in Eq. (C.4) yields

ṖBT Z = λ2

2π
e−β��/2

∞∑
n=−∞

∫ ∞
0

dy cos (yβ��/π)

⎡
⎣ 1√

Kn + cosh2 y

− ζ√
Qn + cosh2 y

⎤
⎦ , (C.10)

as stated in Eq. (5.27).
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